
Preface, Contents

How to Design Control Programs
1

Structuring the User Program
2

Organization Blocks and Executing the
Program

3

Handling Interrupts
4

Memory Areas of S7 CPUs
5

Addressing Peripheral I/Os
6

Data Exchange Between Programmable
Modules

7

Setting System Parameters
8

Operating Modes and Mode Changes
9

Multicomputing
10

Diagnostics and Troubleshooting
11

Sample Program for an Industrial
Blending Process

A

Sample Program for Communication
SFBs for Configured Connections

B

Data and Parameter Types
C

References
D

Glossary, Index

C79000-G7076-C506-01

System Software
for S7-300 and S7-400
Program Design

Programming Manual

SIMATIC

ii
System Software for S7-300 and S7-400 Program Design

C79000 G7076 C506 01

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are
not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are
not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular
part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and
operated and maintained as recommended.

SIMATIC� and SINEC� are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to
trademarks might infringe upon the rights of the trademark owners.

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included in
subsequent editions. Suggestions for improvement are welcomed.

Technical data subject to change.
� Siemens AG 1996

�	��
�	��� ��� �	��	
	��Copyright � Siemens AG 1996 All rights reserved

The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration
of a utility model or design, are reserved.

Siemens AG
Automation Group
Industrial Automation Systems
Postfach 4848, D-90327 Nürnberg

Siemens Aktiengesellschaft C79000-G7076-C506

Safety Guidelines

Qualified Personnel

Correct Usage

Trademarks

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 iii

Preface

This manual describes the various ways in which you can program your
S7-300/S7-400 programmable logic controller (PLC). The manual focuses
primarily on the tasks you need to perform when designing a project “on
paper”.

The manual has the following aims:

� To familiarize you with the operating systems of the S7-300 and S7-400
CPUs

� To support you when designing your user program

� To inform you about the opportunities for communication and diagnostics
with the S7-300 and S7-400 CPUs

For information about the different programming languages, refer to the
corresponding manuals (refer also to the overview of the STEP 7
documentation).

This manual is intended for users involved in controlling processes and who
are responsible for designing programs for programmable controllers. The
manual describes the tasks that can be performed without using the STEP 7
software, such as determining the program sequence for a design project.

This manual applies to the following CPUs of the S7-300 and S7-400:

CPU Order Number Version (or higher)

CPU 312 IFM 6ES7312-5AC00-0AB0 03

CPU 313 6ES7313-1AD00-0AB0 01

CPU 314 6ES7314-1AE00-0AB0 04

CPU 314 IFM 6ES7312-5AE00-0AB0 01

CPU 315 6ES7314-1AF00-0AB0 03

CPU 315-2 DP 6ES7314-2AF00-0AB0 03

CPU 412-1 6ES7412-1XF00-0AB0 01

CPU 413-1 6ES7413-1XG00-0AB0 01

CPU 413-2 6ES7413-2XG00-0AB0 01

CPU 414-1 6ES7414-1XG00-0AB0 01

CPU 414-2 with 128K 6ES7414-2XG01-0AB0 01

Purpose

Audience

Scope of the
Manual

iv
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

CPU Version (or higher)Order Number

CPU 414-2 with 384K 6ES7414-2XJ00-0AB0 01

CPU 416-1 6ES7416-1XJ01-0AB0 01

CPU 416-2 with 0.8M 6ES7416-2XK00-0AB0 01

CPU 416-2 with 1.6M 6ES7416-2XL00-0AB0 01

The CPU functions described in this manual can be used from Version 3.1 or
higher of the STEP 7 standard software.

There is a wide range of general and specific user documentation available to
support you when configuring and programming an S7 programmable logic
controller. The following tables and the figure below will help you find the
user documentation you require.

Overview of the
STEP 7
Documentation

Preface

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 v

STL LAD FBD SCL

CFC for
S7

Reference
Manual

Program-
ming
Manual

User
Manual

GRAPH HiGraph

/234/

/231/

/232/ /233/ /236/ /250/

/254//251/ /252/

/xxx/: Number in the literature list

/235/

System Software for S7-300/S7-400
Program Design

Standard Software for S7 and M7
STEP 7

Primer

/30/

S7-300 Programmable Controller
Quick Start

System Software for S7-300/400
System and Standard Functions

User
Manual

/230/

Standard Software for S7-300/S7-400
Converting S5 Programs

Language Packages

Online Help

This symbol indicates the order in which you should read the
manuals, particularly if you are a first-time user of S7.

This documentation introduces the methodology.

Reference works which are only required selectively.

The documentation is supported by an online help.

Symbol Meaning

Manuals on
S7-300/S7-400
Hardware

Manual

Preface

vi
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Title Subject

S7-300 Programmable
Controller
Quick Start, Primer

The primer provides you with a very simple introduction to the methods of configuring
and programming an S7-300/400. It is particularly suitable for first-time users of an S7
programmable controller.

S7-300 and S7-400
Program Design
Programming Manual

The “S7-300/400 Program Design” programming manual provides you with the basic
information you require about the structure of the operating system and a user program
for an S7 CPU. First-time users of an S7-300/400 should use this manual to get a basic
overview of programming methods on which to base the design of a user program.

S7-300 and S7-400
System and Standard
Functions
Reference Manual

The S7 CPUs have system functions and organization blocks integrated in the operating
system that can be used when programming. The manual provides you with an
overview of the system functions, organization blocks and loadable standard functions
available with an S7 programmable controller and contains detailed interface
descriptions explaining how to use the functions and blocks in your user program.

STEP 7
User Manual

The “STEP 7” User Manual explains the basic use and functions of the STEP 7
automation software. Whether you are a first-time user of STEP 7 or an experienced
STEP 5 user, the manual will provide you with an overview of the procedures for
configuring, programming and getting started with an S7-300/400 programmable
controller. When working with the software, you can call up the online help which
supports you with information about specific details of the program.

Converting S5 Programs
Manual

You require the “Converting S5 Programs” User Manual if you want to convert
existing S5 programs and to run them on S7 CPUs. The manual explains how to use the
converter. The online help system provides more detailed information about using the
specific converter functions. The online help system also includes an interface
description of the available converted S7 functions.

STL, LAD, FBD, SCL1

Manuals
The manuals for the language packages STL, LAD, FBD, and SCL contain both
instructions for the user and a description of the language. To program an S7-300/400,
you only require one of the languages, but you can, if required, mix the languages
within a project. When using one of the languages for the first time, it is advisable to
familiarize yourself with the methods of creating a program as explained in the manual.

When working with the software, you can use the online help system which provides
you with detailed information about using the editors and compilers.

GRAPH1 , HiGraph1,
CFC1

Manuals

The GRAPH, HiGraph, and CFC languages provide you with optional methods for
implementing sequential control systems, status control systems, or graphical
interconnection of blocks. The manuals contain both the user instructions and the
description of the language. When using one of these languages for the first time, it is
advisable to familiarize yourself with the methods of creating a program based on the
“S7-300 and S7-400 Program Design” manual. When working with the software, you
can also use the online help system (with the exception of HiGraph) that provides you
with detailed information about using the editors and compilers.

1 Optional package for system software for S7-300/S7-400

The various S7-300 and S7-400 CPUs, the S7-300 and S7-400 modules, and
the instructions of the CPU are described in the following manuals:

� For the S7-300 programmable logic controller, refer to the manuals:
Hardware and Installation (CPU Data, Module Data) and the Instruction
List.

� For the S7-400 programmable logic controller, refer to the manuals:
Hardware and Installation (CPU Data, Module Data) and the Instruction
List.

Other Manuals

Preface

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 vii

Since this manual provides you with a basic overview of the operating
system of the S7-300/400, we recommend that you first have a look at the
general contents of the chapters and then select the topics that you will
require when designing your program for more intensive reading.

� Chapter 1 describes the basic tasks involved in planning an automation
project.

� Chapter 2 shows you how to select the block structure for your S7
program.

� Chapters 3 and 4 describe the role of the organization blocks when the
CPU executes your program.

� Chapters 5 and 6 describe the memory areas of the CPU and explain how
the I/Os are addressed.

� Chapters 7 and 8 describe how you can exchange data between S7-CPUs
and how you can adapt certain properties of a programmable logic
controller by setting system parameters.

� Chapter 9 provides an overview of the operating modes and the various
types of startup on the S7-CPUs. The chapter also explains how the
operating system supports you when debugging your user program.

� Chapter 10 describes the multicomputing mode and the points to note
when programming for this mode.

� Chapter 11 describes system diagnostics for S7-CPUs and explains how to
eliminate errors and problems.

� Appendix A and Appendix B contain sample programs for an industrial
blending process and for the data exchange using communication function
blocks.

� Appendix C is a reference section listing data and parameter types.

� Appendix D contains the list of Literature referred to in the manual.

� The Glossary explains important terms used in the manual. The Index
helps you to locate sections of text and topics quickly.

References to other manuals and documentation are indicated by numbers in
slashes /.../. These numbers refer to the titles of manuals listed in
Appendix KEIN MERKER.

If you have any questions regarding the software described in this manual
and cannot find an answer here or in the online help, please contact the
Siemens representative in your area. You will find a list of addresses in the
Appendix of /70/ or /100/, or in catalogs, and in Compuserve (go
autforum) . You can also speak to our Hotline under the following phone
or fax number:

Tel. (+49) (911) 895-7000 (Fax 7001)

How to Use this
Manual

Conventions

Additional
Assistance

Preface

viii
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

If you have any questions or comments on this manual, please fill out the
remarks form at the end of the manual and return it to the address shown on
the form. We would be grateful if you could also take the time to answer the
questions giving your personal opinion of the manual.

Siemens also offers a number of training courses to introduce you to the
SIMATIC S7 automation system. Please contact your regional training center
or the central training center in Nuremberg, Germany for details:

D-90327 Nuremberg, Tel. (+49) (911) 895-3154.

Preface

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 ix

Contents

1 How to Design Control Programs 1-1.

1.1 Planning the Automation Project 1-2.

1.2 Dividing the Process into Individual Tasks 1-3.

1.3 Describing the Individual Tasks and Areas 1-5.

1.4 Establishing the Safety Requirements 1-9.

1.5 Describing the Required Operator Displays and Controls 1-10.

1.6 Creating a Configuration Diagram 1-11.

2 Structuring the User Program 2-1.

2.1 The Programs in a CPU 2-2.

2.2 Elements of the User Program 2-3.

2.3 Call Hierarchy of the Blocks 2-4.

2.4 Variables of a Block 2-5.

2.5 Range of Instructions of the S7 CPUs 2-7.

2.6 Organization Blocks (OB) and Program Structure 2-9.

2.7 System Function Blocks (SFB) and System Functions (SFC) 2-10.

2.8 Functions (FC) 2-11.

2.9 Function Blocks (FB) 2-12.

2.10 Instance Data Blocks 2-15.

2.11 Shared Data Blocks (DB) 2-17.

2.12 Saving the Data of an Interrupted Block 2-18.

2.13 Avoiding Errors when Calling Blocks 2-20.

x
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

3 Organization Blocks and Executing the Program 3-1.

3.1 Types of Organization Block 3-2.

3.2 Organization Blocks for the Startup Program 3-4.

3.3 Organization Block for Cyclic Program Execution 3-5.

3.4 Organization Block for Background Program Execution 3-7.

3.5 Organization Blocks for Interrupt-Driven Program Execution 3-8.

3.6 Organization Blocks for Handling Errors 3-10.

3.7 Interrupting Program Execution 3-12.

3.8 Managing Local Data (L Stack) 3-13.

4 Handling Interrupts 4-1.

4.1 Using Interrupt OBs 4-2.

4.2 Time-of-Day Interrupts (OB10 to OB17) 4-3.

4.3 Time-Delay Interrupts (OB20 to OB23) 4-5.

4.4 Cyclic Interrupts (OB30 to OB38) 4-6.

4.5 Hardware Interrupts (OB40 to OB47) 4-8.

5 Memory Areas of S7 CPUs 5-1.

5.1 Memory Areas of the CPU 5-2.

5.2 Absolute and Symbolic Addressing 5-5.

5.3 Storing Programs on the CPU 5-6.

5.4 Retentive Memory Areas on S7-300 CPUs 5-8.

5.5 Retentive Memory Areas on S7-400 CPUs 5-10.

5.6 Process Image Input/Output Tables 5-11.

5.7 Local Data Stack 5-13.

6 Addressing Peripheral I/Os 6-1.

6.1 Access to Process Data 6-2.

6.2 Access to the Peripheral Data Area 6-4.

6.3 Special Features of Distributed Peripheral I/Os (DP) 6-6.

7 Data Exchange Between Programmable Modules 7-1.

7.1 Types of Communication 7-2.

7.2 Data Exchange with SFBs for Configured Connections 7-3.

7.3 Configuring a Communication Connection Between Partners 7-5.

7.4 Working with Communication SFBs for Configured Connections 7-7.

7.5 Data Exchange with Communication SFCs for
Non-Configured Connections 7-8.

Contents

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 xi

8 Setting System Parameters 8-1.

8.1 Changing the Behavior and Properties of Modules 8-2.

8.2 Using the Clock Functions 8-4.

8.3 Specifying the Startup Behavior 8-5.

8.4 Settings for the Cycle 8-6.

8.5 Specifying the MPI Parameters 8-9.

8.6 Specifying Retentive Memory Areas 8-10.

8.7 Using Clock Memory and Timers 8-11.

8.8 Changing the Priority Classes and Amount of Local Data 8-12.

9 Operating Modes and Mode Changes 9-1.

9.1 Operating Modes and Mode Changes 9-2.

9.2 STOP Mode 9-5.

9.3 STARTUP Mode 9-6.

9.4 RUN Mode 9-12.

9.5 HOLD Mode 9-13.

9.6 Testing the User Program 9-14.

10 Multicomputing 10-1.

10.1 Overview 10-2.

10.2 Configuring Modules 10-4.

10.3 Programming the CPUs 10-6.

10.4 Synchronizing the CPUs 10-8.

10.5 Dealing with Errors 10-10.

11 Diagnostics and Troubleshooting 11-1.

11.1 Diagnostic Information 11-2.

11.2 System Status List SZL 11-4.

11.3 Diagnostic Buffer 11-7.

11.4 Sending Your Own Diagnostic Messages 11-8.

11.5 Evaluating the Output Parameter RET_VAL 11-9.

11.6 Error OBs as a Reaction to Detected Errors 11-10.

11.7 Using “Replacement Values” When an Error is Detected 11-14.

11.8 Time Error OB (OB80) 11-17.

11.9 Power Supply Error OB (OB81) 11-18.

11.10 Diagnostic Interrupt OB (OB82) 11-19.

11.11 Insert/Remove Module Interrupt OB (OB83) 11-20.

11.12 CPU Hardware Fault OB (OB84) 11-21.

Contents

xii
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.13 Priority Class Error OB (OB85) 11-22.

11.14 Rack Failure OB (OB86) 11-23.

11.15 Communication Error OB (OB87) 11-24.

11.16 Programming Error OB (OB121) 11-25.

11.17 I/O Access Error OB (OB122) 11-26.

A Sample Program for an Industrial Blending Process A-1.

A.1 Example of an Industrial Blending Process A-2.

A.2 Defining Logic Blocks A-4.

A.3 Assigning Symbolic Names A-5.

A.4 Creating the FB for the Motor A-7.

A.5 Creating the FC for the Valves A-11.

A.6 Creating OB1 A-13.

B Sample Program for Communication SFBs for Configured Connections B-1.

B.1 Overview B-2.

B.2 Sample Program on the Sending CPU B-3.

B.3 Sample Program on the Receiving CPU B-6.

B.4 Using the Sample Program B-8.

B.5 Call Hierarchy of the Blocks in the Sample Program B-9.

C Data and Parameter Types C-1.

C.1 Data Types C-2.

C.2 Using Complex Data Types C-6.

C.3 Using Arrays to Access Data C-7.

C.4 Using Structures to Access Data C-10.

C.5 Using User-Defined Data Types to Access Data C-12.

C.6 Using the ANY Parameter Type C-15.

C.7 Assigning Data Types to Local Data of Logic Blocks C-17.

C.8 Restrictions When Transferring Parameters C-19.

D References D-1.

 Glossary Glossary-1.

 Index Index-1.

Contents

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1-1

How to Design Control Programs

This chapter outlines the basic tasks involved in planning an automation
project and designing a user program for a programmable controller (PLC).

Based on an example of automating an industrial blending process, you are
guided step by step through the procedure.

The example of a program for an industrial blending process is described in
Appendix A.

Section Description Page

1.1 Planning the Automation Project 1-2

1.2 Dividing the Process into Individual Tasks 1-3

1.3 Describing the Individual Tasks and Areas 1-5

1.4 Establishing the Safety Requirements 1-9

1.5 Describing the Required Operator Displays and Controls 1-10

1.6 Creating a Configuration Diagram 1-11

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

1

1-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

1.1 Planning the Automation Project

There are many ways of planning an automation project. This section
describes a basic procedure that you can use for any project.

Figure 1-1 outlines the basic steps.

Divide the process into tasks

Describe the individual tasks and areas

Define the safety requirements

Describe the required operator displays and controls

Create configuration diagrams of your programmable controller

Figure 1-1 Basic Steps When Planning an Automation Project

The individual steps are described in detail in Sections 1.2 to 1.6.

Overview

How to Design Control Programs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1-3

1.2 Dividing the Process into Individual Tasks

A process consists of individual tasks. By identifying groups of related tasks
within a process and then breaking these groups down into smaller tasks,
even the most complex process can be defined.

The following example of an industrial blending system can be used to
illustrate how to organize a process into functional areas and individual tasks.
(see Figure 1-2).

M

M

Drain solenoid
valve

Switch for tank
level measurement

Agitator motor

Ingredient A

Ingredient B

Inlet
valve

Feed
valve

Feed
pump

Inlet
valve

Feed
valve

Feed
pump

Flow
sensor

M

M M

M

Figure 1-2 Example of an Industrial Blending Process

After defining the process to be controlled, divide the project into related
groups or areas (see Figure 1-3). As each group is divided into smaller tasks,
the tasks required for controlling that part of the process become less
complicated.

Overview

Identifying Areas
and Tasks within
the Process

How to Design Control Programs

1-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

M

M

 Drain valve

Switch for tank level
measurement

Agitator motor
Inlet
valve

Feed
valve

Feed
pump

Inlet
valve

Feed
valve

Feed
pump

Flow
sensor

Area: ingredient B

Area: ingredient A

Area: mixing tank
M

M M

M

Area: drain

Figure 1-3 Defining Areas Within a Process

In our example of an industrial blending process, you can identify four
distinct areas (see Table 1-1). In this example, the area for ingredient A
contains the same equipment as the area for ingredient B.

Table 1-1 Functional Areas and Equipment in the Sample Process

Functional Area Equipment Used

Ingredient A Feed pump for ingredient A
Inlet valve for ingredient A
Feed valve for ingredient A
Flow sensor for ingredient A

Ingredient B Feed pump for ingredient B
Inlet valve for ingredient B
Feed valve for ingredient B
Flow sensor for ingredient B

Mixing tank Agitator motor
Tank level switches

Drain Drain valve

How to Design Control Programs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1-5

1.3 Describing the Individual Tasks and Areas

As you describe each area and task within your process, you define not only
the operation of each area, but also the various elements that control the area.
These include:

� Electrical, mechanical, and logical inputs and outputs for each task

� Interlocks and dependencies between the individual tasks

The sample industrial blending process uses pumps, motors and valves.
These must be described precisely to identify the operating characteristics
and type of interlocks required during operation. Tables 1-2 to 1-6 provide
examples of the description of the equipment used in an industrial blending
process. When you have completed description, you could also use it to order
the required equipment.

Table 1-2 Description of the Feed Pump Motors for Ingredients A and B

Ingredients A/B: Feed Pump Motors

1. The feed pump motors convey ingredients A and B to the mixing tank.

– Flow rate: 400 l (100 gallons) per minute

– Rating: 100 kW (134 hp) at 1200 rpm

2. The pumps are controlled (start/stop) from an operator station located near the
mixing tank. The number of starts is counted for maintenance purposes. Both the
counters and the display can be reset with one button.

3. The following conditions must be satisfied for the pumps to operate:

– The mixing tank is not full.

– The drain valve of the mixing tank is closed.

– The emergency stop is not active.

4. The pumps are switched off if the following condition is satisfied:

– The flow sensor signals no flow 7 seconds after the pump motor is started.

– The flow sensor signals that the flow has ceased.

Table 1-3 Description of the Inlet and Feed Valves

Ingredients A/B: Inlet and Feed Valves

1. The inlet and feed valves for ingredients A and B allow or prevent the flow of the
ingredients into the mixing tank. The valves have a solenoid with a spring return.

– When the solenoid is activated, the valve is opened.

– When the solenoid is deactivated, the valve is closed.

2. The inlet and feed valves are controlled by the user program.

Overview

Describing How
the Areas Function

How to Design Control Programs

1-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table 1-3 Description of the Inlet and Feed Valves, continued

Ingredients A/B: Inlet and Feed Valves

3. For the valves to be activated, the following condition must be satisfied:

– The feed pump motor has been running for at least 1 second.

4. The valves are deactivated if the following condition is satisfied:

– The flow sensor signals no flow.

Table 1-4 Description of the Agitator Motor

Agitator Motor

1. The agitator motor mixes ingredient A with ingredient B in the mixing tank.

– Rating: 100 kW (134 hp) at 1200 rpm

2. The agitator motor is controlled (start/stop) from an operator station located near
the mixing tank. The number of starts is counted for maintenance purposes. Both
the counter and the display can be reset with one button.

3. To operate the agitator motor, the following conditions must be satisfied:

– The tank level sensor is not signaling ”Tank Below Minimum”.

– The drain valve of the mixing tank is closed.

– The emergency stop is not active.

4. The agitator motor is switched off if the following condition is satisfied:

– The tachometer does not indicate that the rated speed has been
reached within 10 seconds of starting the motor.

Table 1-5 Description of the Drain Valve

Drain Valve

1. The drain valve allows the mixture to drain (using gravity feed) to the next stage in
the process. The valve has a solenoid with a spring return.

– If the solenoid is activated, the outlet valve is opened.

– If the solenoid is deactivated, the outlet valve is closed.

2. The outlet valve is controlled (open/close) from an operator station.

3. The drain valve can be opened under the following conditions:

– The agitator motor is off.

– The tank level sensor is not signaling “Tank_empty”.

– The emergency stop is not active.

4. The drain valve is switched off if the following condition is satisfied:

– The tank level measurement indicates “Tank empty”.

Table 1-6 Description of the Mixing Tank Level Switches

Mixing Tank Level Switches

1. The switches in the mixing tank indicate the level in the tank and are used to
interlock the feed pumps and the agitator motor.

How to Design Control Programs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1-7

After writing a physical description of each device to be controlled, draw
diagrams of the inputs and outputs for each device or task area. (see
Figure 1-4). These diagrams correspond to the logic blocks to be
programmed.

Device

Input 1

Input n

In/out 1

In/out n

Output n

Output 1

Figure 1-4 Input/Output Diagram

In the example of the industrial blending process, two feed pumps and an
agitator are used. The required motors are controlled by a “motor block” that
is the same for all three devices. This block requires six inputs: two to start or
stop the motor, one to reset the maintenance display, one for the motor
response signal (motor running/not running), one for the time during which
the response signal must be received, and one for the number of the timer
used to measure the time.
The logic block also requires four outputs: two to indicate the operating state
of the motor, one to indicate faults, and one to indicate that the motor is due
for maintenance.
An in/out is also necessary to activate the motor. This is also processed or
modified in the “motor block” program.

Motor

Start

Response

Reset_Maint

Timer_No

Fault

Maint

Stop_Dsp

Start_DspStop

Response_Time

Motor

Figure 1-5 I/O Diagram of the Agitator Motor “Motor Block”

Creating
Input/Output
Diagrams

Creating an I/O
Diagram for the
Motor

How to Design Control Programs

1-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Each valve is controlled by a “valve block” that is the same for all the valves
used. The logic block has two inputs: one to open and one to close the valve.
It also has two outputs: one to indicate that the valve is open and the other to
indicated that it is closed.
The block has an in/out to activate the valve. This is also processed or
modified in the “valve block” program.

Valve

Open

Valve

Dsp_ClosedClose

Dsp_Open

Figure 1-6 I/O Diagram of the Valves

Creating an I/O
Diagram for the
Valves

How to Design Control Programs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1-9

1.4 Establishing the Safety Requirements

Decide which additional elements are needed to ensure the safety of the
process, based on legal requirements and corporate policy. In your
description, you should also include any influences that the safety elements
have on your process areas.

Find out which devices require hardwired circuits to meet safety
requirements. By definition, these safety circuits operate independently of the
programmable controller (although the safety circuit generally provides an
I/O interface to allow coordination with the user program). Normally, you
configure a matrix to connect every actuator with its own emergency off
range. This matrix is the basis for the circuit diagrams of the safety circuits.

To design safety mechanisms, follow the steps outline below:

� Determine the logical and mechanical/electrical interlocks between the
individual automation tasks.

� Design circuits to allow the devices belonging to the process to be
operated manually in an emergency.

� Establish any further safety requirements for safe operation of the
process.

The sample industrial blending process uses the following logic for its safety
circuit:

� One Emergency Stop push button shuts down the following devices
independent of the programmable controller (PLC):

– Ingredient A feed pump

– Ingredient B feed pump

– Agitator motor

– Valves

� The Emergency Stop push button is located on the operator station.

� An input to the controller indicates the state of the Emergency Stop push
button.

Overview

Defining Safety
Requirements

Creating a Safety
Circuit

How to Design Control Programs

1-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

1.5 Describing the Required Operator Displays and Controls

Every process needs an operator interface that allows human intervention in
the process. Part of the design specification includes the design of the
operator station.

In the industrial blending process described in our example, each device can
be started or stopped by a push button located on the operator station. This
operator station includes indicators to show the status of the operation (see
Figure 1-7). The console also includes display lamps for devices that require
maintenance after a certain number of starts and the emergency stop switch
with which the process can be stopped immediately. The console also has a
reset button for the maintenance display of the three motors. Using this, you
can turn off the maintenance display lamps for the motors due for
maintenance and reset the corresponding counters to 0.

EMERGENCY
STOP

Ingr. A
stop

Ingr.A
start

Ingr. B
stop

Start
agitator

Stop
agitator

Tank full

Tank
below min.

Tank
empty

Open
drain

Close
drain

Maint.
pump A

Maint.
pump B

Maint.
agitator

Ingr.B
start

Reset maintenance

Figure 1-7 Example of an Operator Station Console

Overview

Defining an
Operator Station

How to Design Control Programs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1-11

1.6 Creating a Configuration Diagram

After you have documented the design requirements, you must then decide
on the type of control equipment required for the project.

By deciding which modules you want to use, you also specify the structure of
the programmable controller. Create a configuration diagram specifying the
following aspects:

� Type of CPU

� Number and type of I/O modules

� Configuration of the physical inputs and outputs

Figure 1-8 illustrates the configuration for the industrial blending process in
our example.

Digital
input
module

Digital
output
module

Digital
output
module

Industrial blending process

Operator
station

S7-300 CPU
I 0.0
to
I 1.7

Q 4.0
to
Q 5.0

Q 8.0
to
Q 9.0

EMER
STOP
circuit

Figure 1-8 Example of an S7 Configuration Diagram

Overview

Determining the
PLC Configuration

How to Design Control Programs

1-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

How to Design Control Programs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-1

Structuring the User Program

This chapter will help you when you are deciding on the block structure of
your S7 program. It describes the following:

� The programs of a CPU: operating system and user program

� The structure of user programs

� The elements of a user program

The reference manual /235/ contains a detailed description of the individual
organization blocks and system functions.

The Instruction Lists /72/ and /102/ contain an overview of the range of
instructions of the S7-300 and S7-400 CPUs.

Section Description Page

2.1 The Programs in a CPU 2-2

2.2 Elements of the User Program 2-3

2.3 Call Hierarchy of the Blocks 2-4

2.4 Variables of a Block 2-5

2.5 Range of Instructions of the S7 CPUs 2-7

2.6 Organization Blocks (OB) and Program Structure 2-9

2.7 System Function Blocks (SFB) and System Functions
(SFC)

2-10

2.8 Functions (FC) 2-11

2.9 Function Blocks (FB) 2-12

2.10 Instance Data Blocks 2-15

2.11 Shared Data Blocks (DB) 2-17

2.12 Saving the Data of an Interrupted Block 2-18

2.13 Avoiding Errors when Calling Blocks 2-20

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

2

2-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

2.1 The Programs in a CPU

Two different types of program run on a CPU:

� The operating system

� The user program.

Every CPU has an operating system that organizes all the functions and
sequences of the CPU that are not associated with a specific control task. The
tasks of the operating system include the following:

� Handling a complete restart and restart

� Updating the process image table of the inputs and outputting the process
image table of the outputs

� Calling the user program

� Detecting interrupts and calling the interrupt OBs

� Detecting and dealing with errors

� Managing the memory areas

� Communicating with programming devices and other communications
partners

If you change operating system parameters (the operating system default
settings), you can influence the activities of the CPU in certain areas (see
Chapter 8).

You yourself must create the user program and load it on the CPU. This
contains all the functions required to process your specific automation task.
The tasks of the user program include the following:

� Specifying the conditions for a complete restart and warm restart on the
CPU (for example initializing signals with a particular value)

� Processing process data (for example logically combining binary signals,
reading in and evaluating analog signals, specifying binary signals for
output, outputting analog values)

� Specifying the reaction to interrupts

� Handling disturbances in the normal running of the program

Introduction

Operating System

User Program

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-3

2.2 Elements of the User Program

The STEP 7 programming software allows you to structure your user
program, in other words to break down the program into individual,
self-contained program sections. This has the following advantages:

� Extensive programs are easier to understand.

� Individual program sections can be standardized.

� Program organization is simplified.

� It is easier to make modifications to the program.

� Debugging is simplified since you can test separate sections.

� Commissioning your system is made much easier.

The example of an industrial blending process in Chapter 1 illustrated the
advantages of breaking down an automation process into individual tasks.
The program sections of a structured user program correspond to these
individual tasks and are known as the blocks of a program.

An S7 user program consists of blocks, instructions and addresses. Table 2-1
provides you with an overview.

Table 2-1 Elements of a User Program

Element Function Refer to

Organization Blocks (OBs) OBs determine the structure of the user program.

� They form the interface between the operating system
and the user program.

� They control the startup of the programmable logic
controller, the cyclic and interrupt-driven program
execution and are responsible for handling errors.

Section 2.6,
Chapters 3, 4, 11

System function blocks (SFBs)
and system functions (SFCs)

These are standard, preprogrammed blocks that you do not
need to program yourself. SFBs and SFCs are integrated in
the S7 CPU. They can be called by the user program. Since
these blocks are part of the operating system they do not
need to be loaded as part of the program like other blocks.

Section 2.7,
Chapters 7, 8

Functions (FCs) and function
blocks (FBs)

These are logic blocks that you yourself must program. FBs
are blocks with an associated memory area that is used to
supply parameters. FCs are blocks that do not have an
associated memory area for supplying parameters.

Sections 2.8, 2.9

Data blocks These are data areas containing user data. There are two
types of data block:

� Instance data blocks that are assigned to an FB

� Shared data blocks that can be accessed by all logic
blocks

Sections 2.10,
2.11

Instructions of the S7 CPU The CPUs provide you with instructions with which you can
create blocks in various programming languages.

Section 2.5

Addresses Memory and I/O areas of the S7 CPUs Chapters 5, 6

Overview

Structuring the User Program

2-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

2.3 Call Hierarchy of the Blocks

Before the blocks in a user program can be processed, they must be called.
These calls are special STEP 7 instructions known as block calls. You can
only program block calls within logic blocks (OBs, FBs, FCs, SFBs and
SFCs). They can be compared with jumps to a subroutine. Each jump means
that you change to a different block. The return address in the calling block is
saved temporarily by the system.

The order and nesting of the block calls is known as the call hierarchy. The
number of blocks that can be nested, (the nesting depth) depends on the
particular CPU.

OB FB FC

FB FB
SFC

FC

O
pe

ra
tin

g
sy

st
em

DB

Figure 2-1 Example of the Call Hierarchy of a User Program

Figure 2-2 shows the sequence of a block call within a user program. The
program calls the second block whose instructions are then executed completely.
Once the second or called block has been executed, execution of the interrupted
block that made the call is resumed at the operation following the block call.

Instruction that calls
another block

Block end

Calling block
(OB, FB, FC)

Called block
(FB, FC, SFB or SFC)

Program
execution

Program
execution

Figure 2-2 Calling a Block

Before you program a block, you must specify which data will be used by
your program, in other words, you must declare the variables of the block.

Introduction

Block Calls

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-5

2.4 Variables of a Block

Apart from the instructions of the user program, blocks also contain block
variables that you declare using STEP 7 when you program your own blocks.
In the variable declaration, you can specify variables that the block will use
when it is being executed. Variables are as follows:

� Parameters that are transferred between logic blocks.

� Static variables that are saved in an instance data block and are retained
after the function block to which they belong has been executed.

� Temporary variables that are only available while the block is being
executed and are then free to be overwritten when the block is completed.
The operating system assigns a separate memory area for temporary data
(see also Section 3.8 Local Data Stack).

Since you can transfer parameters to blocks, you can create general, re-usable
blocks whose programs can be used by other blocks in your program. There
are two types of parameter as follows:

� Formal parameters that identify the parameters. These are specified in the
variable declaration.

� Actual parameters that replace the formal parameters when the block is
called.

For every formal parameter, you must specify a declaration type and a data
type.

You specify how a parameter is used by the logic block. You can define a
parameter as an input value or output value. You can also use a parameter as
an in/out variable that is transferred to the block and then output again by the
block. Figure 2-3 shows the relationship of the formal parameters to an FB
called “Motor”.

Motor_data_1

Speed

Run_time

History

Motor_ ON

In/Out
(IN_OUT)

Output
(OUT)

Motor

Input
(IN)

Figure 2-3 Defining the Input, Output and In/Out Parameters of a Logic Block

Introduction

Block Parameters

Declaration Types

Structuring the User Program

2-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table 2-2 describes the declaration types.

Table 2-2 Declaration Types for Parameters and Local Variables

Parameter/
Variable

Description Permitted
in

IN Input parameter provided by the calling logic block. FB, FC

OUT Output parameter provided by the calling block. FB, FC

IN_OUT Parameter whose value is supplied by the calling block,
modified by the called block and returned to the calling
block.

FB, FC

STAT Static variable that is saved in an instance DB. FB

TEMP Temporary variable that is saved temporarily in the local
data stack. Once the logic block has been executed com-
pletely, the value of the variable is no longer available.

FB, FC, OB

With FBs, the data that was declared as IN, OUT, IN_OUT, and all static
variables (STAT) are saved in the instance DB. Temporary variables of the
type TEMP are not saved.

FCs cannot have any static variables. The input, output and in/out parameters
are saved as pointers to the actual parameters made available by the calling
block.

All the data used in a user program must be identified by a data type. When
you define the data type for parameters and static or temporary variables, you
also specify the length and structure of the variables. The actual parameter
supplied when the block is called must have the same data type as the formal
parameter. Variables can have the following data types:

� Elementary data types that are provided by STEP 7

� Complex data types that you can create by combining elementary data
types

� User-defined data types

� Parameter types that define special parameters that are transferred to FBs
or FCs

Data types and parameter types are described in detail in Appendix C.

You can specify initial values for all parameters and static data. The value
you select must be compatible with the data type. If you do not specify an
initial value, a default value will be assigned depending on the data type of
the variable.

Data Types

Initial Values

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-7

2.5 Range of Instructions of the S7 CPUs

The STEP 7 programming software is the link between the user and the
S7-300 and S7-400 programmable logic controllers. Using STEP 7, you can
program your automation task in various programming languages.

The programming languages use the instructions provided by the S7 CPUs.
The range of instructions is described in detail in the instruction lists of the
CPUs, /72/ and /102/. The instructions can be divided into the following
groups:

� Block instructions

� Logic instructions (bit, word)

� Math instructions (integer, floating point)

� Comparison instructions

� Logic control instructions

� Load and transfer instructions

� Logarithmic and trigonometric instructions

� Shift and rotate instructions

� Conversion instructions

� Timer and counter instructions

� Jump instructions

Table 2-3 shows the programming languages that are available and their most
important characteristics. Which language you choose depends largely on
your own experience and which language you personally find easiest to use.

Table 2-3 Programming Languages in STEP 7

Programming
Language

User Group Application Incremental
Input

Source-
oriented

Input

Block can be
“Decompiled”
from the CPU

Statement list
STL

Users who prefer
programming in a
language similar to
machine code

Programs
optimized in
terms of run time
and memory
requirements

yes yes yes

Ladder Logic
LAD

Users who are
accustomed to working
with circuit diagrams

Programming
logic controls

yes no yes

Function Block
Diagram
FBD

Users who are familiar
with the logic boxes of
Boolean algebra.

Programming
logic controls

yes no yes

Overview

Programming
Languages

Structuring the User Program

2-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table 2-3 Programming Languages in STEP 7, continued

Programming
Language

Block can be
“Decompiled”
from the CPU

Source-
oriented

Input

Incremental
Input

ApplicationUser Group

SCL (Structured
Control Language)

Optional package

Users who have
programmed in
high-level languages
such as PASCAL or C.

Programming
data process
tasks

no yes no

GRAPH

Optional package

Users who want to work
oriented on the
technological functions
without extensive
programming or PLC
experience.

Convenient
description of
sequential
processes

yes no yes

HiGraph

Optional package

Users who want to work
oriented on the
technological functions
without extensive
programming or PLC
experience.

Convenient
description of
asynchronous,
non-sequential
processes

no yes no

CFC

Optional package

Users who want to work
oriented on the
technological functions
without extensive
programming or PLC
experience.

Description of
continuous
processes

no yes 1) no

1) But with syntax check when editing

For a detailed description of these programming languages, refer to the
manuals /232/, /233/, /236/, /250/, /251/, /252/ and /254/.

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-9

2.6 Organization Blocks (OB) and Program Structure

Organization blocks (OBs) are the interface between the operating system
and the user program. They are called by the operating system and control
cyclic and interrupt-driven program execution and how the programmable
logic controller starts up. They also handle the response to errors. By
programming the organization blocks you specify the reaction of the CPU.

In most situations, the predominant type of program execution on
programmable logic controllers is cyclic execution. This means that the
operating system runs in a program loop (the cycle) and calls the
organization block OB1 once each time the loop is executed. The user
program in OB1 is therefore executed cyclically.

Cyclic program execution can be interrupted by certain events (interrupts). If
such an event occurs, the block currently being executed is interrupted at a
command boundary and a different organization block that is assigned to the
particular event is called. Once the organization block has been executed, the
cyclic program is resumed at the point at which it was interrupted.

In SIMATIC S7, the following non-cyclic types of program execution are
possible:

� Time-driven program execution

� Process interrupt-driven program execution

� Diagnostic interrupt-driven program execution

� Processing of synchronous and asynchronous errors

� Processing of the different types of startup

� Multicomputing-controlled program execution

� Background program execution

For more detailed information about program execution and the interrupt
OBs, refer to Sections 3 and 4.

You can write your entire user program in OB1 (linear programming). This is
only advisable with simple programs written for the S7-300 CPU and
requiring little memory.

Complex automation tasks can be controlled more easily by dividing them
into smaller tasks reflecting the technological functions of the process (see
Section 1.2) or that can be used more than once. These tasks are represented
by corresponding program sections, known as the blocks (structured
programming).

Definition

Cyclic Program
Execution

Interrupt-Driven
Program
Execution

Linear Versus
Structured
Programming

Structuring the User Program

2-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

2.7 System Function Blocks (SFB) and System Functions (SFC)

You do not need to program every function yourself. S7 CPUs provide you
with preprogrammed blocks that you can call in your user program.

A system function block (SFB) is a function block integrated on the S7 CPU.
SFBs are part of the operating system and are not loaded as part of the
program. Like FBs, SFBs are blocks “with memory”. You must also create
instance data blocks for SFBs and load them on the CPU as part of the
program.

S7 CPUs provide the following SFBs

� for communication on configured connections

� for integrated special functions (for example SFB29 “HS_COUNT” on
the CPU 312 IFM and the CPU 314 IFM).

A system function is a preprogrammed, tested function that is integrated on
the S7 CPU. You can call the SFC in your program. SFCs are part of the
operating system and are not loaded as part of the program. Like FCs, SFCs
are blocks “without memory”.

S7-CPUs provide SFCs for the following functions:

� Copying and block functions

� Checking the program

� Handling the clock and run-time meters

� Transferring data records

� Transferring events from a CPU to all other CPUs in the multicomputing
mode

� Handling time-of-day and time-delay interrupts

� Handling synchronous errors, interrupts and asynchronous errors

� System diagnostics

� Process image updating and bit field processing

� Addressing modules

� Distributed peripheral I/Os

� Global data communication

� Communication on non-configured connections

� Generating block-related messages

For more detailed information about SFBs and SFCs, refer to the reference
manual /235/. The CPU descriptions /70/ and /101/ explain which SFBs and
SFCs are available.

Preprogrammed
Blocks

System Function
Blocks

System Functions

Additional
Information

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-11

2.8 Functions (FC)

Functions (FCs) belong to the blocks that you program yourself. A function is
a logic block “without memory”. Temporary variables belonging to the FC
are saved in the local data stack. This data is then lost when the FC has been
executed. To save data permanently, functions can also use shared data
blocks.

Since an FC does not have any memory of its own, you must always specify
actual parameters for it. You cannot assign initial values for the local data of
an FC.

An FC contains a program section that is always executed when the FC is
called by a different logic block. You can use functions for the following
purposes:

� To return a function value to the calling block (example: math functions)

� To execute a technological function (example: single control function
with a bit logic operation).

You must always assign actual parameters to the formal parameters of an FC.
The input, output and in/out parameters used by the FC are saved as pointers to
the actual parameters of the logic block that called the FC.

Definition

Application

Assigning Actual
Parameters to
Formal Parameters

Structuring the User Program

2-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

2.9 Function Blocks (FB)

Function blocks FBs) belong to the blocks that you program yourself. A
function block is a block “with memory”. It is assigned a data block as its
memory (instance data block). The parameters that are transferred to the FB
and the static variables are saved in the instance DB. Temporary variables are
saved in the local data stack.

Data saved in the instance DB is not lost when execution of the FB is
complete. Data saved in the local data stack is, however, lost when execution
of the FB is completed.

Note

To avoid errors when working with FBs, read Section 2.13.

An FB contains a program that is always executed when the FB is called by a
different logic block. Function blocks make it much easier to program
frequently occurring, complex functions.

An instance data block is assigned to every function block call that transfers
parameters.

By calling more than one instance of an FB, you can control more than one
device with one FB. An FB for a motor type, can, for example, control
various motors by using a different set of instance data for each different
motor. The data for each motor (for example speed, ramping, accumulated
operating time etc.) can be saved in one or more instance DBs (see also
Section 2.10). Figure 2-4 shows the formal parameters of an FB that uses
actual parameters saved in the instance DB.

FB20:Motor DB202:Motor_2

Start INT IN
Speed INT IN

History DT IN_OUT
Run_timeTIMEIN_OUT

Integer (16 bits): start

Integer (16 bits): speed

Date and time (48 bits): pointer
to the address of the history

Time (32 bits): run time

Figure 2-4 Relationship Between the Declarations of the FB and the Data of the
Instance DB

Definition

Application

FBs and Instance
DBs

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-13

If your user program is structured so that an FB contains calls for further
already existing function blocks, you can include the FBs to be called as
static variables of the data type FB in the variable declaration table of the
calling FB. This technique allows you to nest variables and concentrate the
instance data in one instance data block (multiple instance) see also
Section 2.10.

It is not generally necessary in STEP 7 to assign actual parameters to the
formal parameters of an FB. There are, however, exceptions to this. Actual
parameters must be assigned in the following situations:

� For an in/out parameter of a complex data type (for example STRING,
ARRAY or DATE_AND_TIME)

� For all parameter types (for example TIMER, COUNTER or POINTER)

STEP 7 assigns the actual parameters to the formal parameters of an FB as
follows:

� When you specify actual parameters in the call statement: the instructions
of the FB use the actual parameters provided.

� When you do not specify actual parameters in the call statement: the
instructions of the FB use the value saved in the instance DB.

Table 2-4 shows which variables must be assigned actual parameters.

Table 2-4 Assigning Actual Parameters to the Formal Parameters of an FB

Data Type

Variable Elementary Data
Type

Complex Data Type Parameter Type

Input No parameter requiredNo parameter required Actual parameter
required

Output No parameter requiredNo parameter required Actual parameter
required

In/out No parameter required Actual parameter
required

–

Variables of the
Data Type FB

Assigning Actual
Parameters to
Formal Parameters

Structuring the User Program

2-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

You can assign initial values to the formal parameters in the declaration
section of the FB. These values are written into the instance DB assigned to
the FB.

If you do not assign actual parameters to the formal parameters in the call
statement, STEP 7 uses the values saved in the instance DB. These values
can also be the initial values that were entered in the variable declaration
table of an FB.

Table 2-5 shows which variables can be assigned an initial value. Since the
temporary data are lost after the block has been executed, you cannot assign
any values to them.

Table 2-5 Assigning Initial Values to the Variables of an FB

Data Type

Variable Elementary Data
Type

Complex Data Type Parameter Type

Input Initial value permitted Initial value permitted –

Output Initial value permitted Initial value permitted –

In/out Initial value permitted – –

Static Initial value permitted Initial value permitted –

Temporary – – –

Assigning Initial
Values to Formal
Parameters

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-15

2.10 Instance Data Blocks

An instance data block is assigned to every function block call that transfers
parameters. The actual parameters and the static data of the FB are saved in
the instance DB. The variables declared in the FB determine the structure of
the instance data block.

Instance means a function block call. If, for example, a function block is
called five times in the S7 user program, there are five instances of this
block.

Before you create an instance data block, the corresponding FB must already
exist. You specify the number of the FB when you create the instance data
block.

If you assign several instance data blocks to a function block (FB) that
controls a motor, you can use this FB to control different motors.

The data for each specific motor (for example speed, run-up time, total
operating time) are saved in different data blocks. The DB assigned to the FB
when it is called determines which motor is controlled. With this technique,
only one function block is necessary for several motors (see Figure 2-5).

FB22:Motors DB202:Motor_2

DB201:Motor_1

DB203:Motor_3

Call FB22,DB201 uses
data for motor 1

Call FB22,DB202 uses
data for motor 2

Call FB22,DB203 uses
data for motor 3

Figure 2-5 Using an Instance DB for Each Separate Instance

You can also transfer the instance data for several motors at the same time in
one instance DB. To do this, you must program the calls for the motor
controllers in a further FB and declare static variables with the data type FB
for the individual instances (multiple instances) in the declaration section of
the calling FB.

If you use one instance DB for several instances of an FB, you save memory
and optimize the use of data blocks.

Definition

Creating an
Instance DB

An Instance Data
Block for Every
Instance

One Instance DB
for Several
Instances of an FB

Structuring the User Program

2-16
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

In Figure 2-6, the calling FB is FB21 “Motor processing”, the variables are of
data type FB22 and the instances are identified by Motor_1, Motor_2 and
Motor_3. In this example, FB22 does not need its own instance data block,
since its instance data are saved in the instance data block of the calling FB.

Data for motor_2

DB100

Data for motor_3

Call FB21 from a logic block:

CALL FB21,DB100
transfers data for Motor_1,
Motor_2, Motor_3

Call FB22 from FB21:
CALL Motor_1
CALL Motor_2
CALL Motor_3

FB21:Motor processing

Variable declaration:
stat, Motor_1, FB22
stat, Motor_2, FB22
stat, Motor_3, FB22

Data for motor_1

FB22:Motors

Figure 2-6 Using an Instance DB for Several Instances

In a function block, you can call the instances of other existing FBs. The
example in Figure 2-7 shows the assigned instance data, once again saved in
a common instance DB.

FB12:Motor

ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ

DB12:Motor Access only for FB12, call:
CALL FB12,DB112

FB13:Pump

FB14:Agitator

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

DB13:Pump Access only for FB13, call:
CALL FB13, DB13

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ

DB14

Variable declaration:
stat, Motor_10, FB12
stat, Pump_10, FB13

Access for FB14, FB13 and
FB12, call:
CALL FB14,DB14
transfers data for agitator,
Motor_10, and Pump_10

Call FB12 from FB14:
CALL Motor_10

Call FB13 from FB14:
CALL Pump_10

Data for agitator

Data for Motor_10

Data for Pump_10

Figure 2-7 Using one Instance DB for Several Instances of Different FBs

One Instance DB
for Several
Instances of
Different FBs

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-17

2.11 Shared Data Blocks (DB)

In contrast to logic blocks, data blocks do not contain STEP 7 instructions.
They are used to store user data, in other words, data blocks contain variable
data with which the user program works. Shared data blocks are used to store
user data that can be accessed by all other blocks.

The size of DBs can vary. Refer to the description of your CPU for the
maximum possible size (/70/ and /101/).

You can structure shared data blocks in any way to suit your particular
requirements.

If a logic block (FC, FB or OB) is called, it can occupy space in the local
data area (L stack) temporarily. In addition to this local data area, a logic
block can open a memory area in the form of a DB. In contrast to the data in
the local data area, the data in a DB are not deleted when the DB is closed, in
other words, after the corresponding logic block has been executed.

Each FB, FC or OB can read the data from a shared DB or write data to a
shared DB. This data remains in the DB after the DB is exited.

A shared DB and an instance DB can be opened at the same time. Figure 2-8
shows the different methods of access to data blocks.

FC10

FC11

FB12

Shared
DB

 (DB20)

Instance
DB (DB112)

Access by all blocks

Access only by FB12

Figure 2-8 Access to Shared DBs and Instance DBs

Definition

Structure

Shared Data
Blocks in the User
Program

Structuring the User Program

2-18
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

2.12 Saving the Data of an Interrupted Block

The CPU has a “block stack” (B stack) for saving information belonging to a
logic block that has been interrupted. Using this data, the user program can then
be resumed after the interrupt. When one of the following events occurs, block
information is saved in the B stack:

� When a different block is called within a CPU program.

� When a block is interrupted by a higher priority class (for more detailed
information about priority classes, refer to Chapter 3).

The block stack (B stack) is a memory area in the system memory of the
CPU (see also Chapter 5). If the execution of a block is interrupted by a call
for a different block, the following data is saved in the B stack:

� Number, type (OB, FB, FC, SFB, SFC) and return address of the block
that was interrupted.

� Numbers of the data blocks (from the DB and DI register) that were open
when the block was interrupted.

If the CPU is in the STOP mode, you can display the B stack with STEP 7 on
a programming device. The B stack lists all the blocks that had not been
completely executed when the CPU changed to the STOP mode. The blocks
are listed in the order in which they were called in the program (see
Figure 2-9).

Local data of FC2

Block stack (B stack)

Data of FC3:
• Block number
• Return address

Data of FC2:
• Block number
• Return address

Data of FB1:
• Block number
• Return address

The number of
blocks that can
be stored in the
B stack (per
priority class)
depends on the
CPU

Local data stack (L stack)

FB1 FC2 FC3Order in which the
blocks are called

Local data of FB1

Local data of FC3

DB and DI register:
• No. of open DB
• No. of open instance DB

Figure 2-9 Information in the B Stack and L Stack

Overview

Block Stack

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-19

The local data stack (L stack) is a memory area in the system memory of the
CPU. The L stack saves the temporary variables (local data) of the block (see
also Section 3.8).

Note

The L stack not only saves the temporary data of a block but also provides
additional memory space, for example, for transferring parameters.

There are two data block registers. These contain the numbers of opened data
blocks, as follows:

� The DB register contains the number of the open shared data block

� The DI register contains the number of the open instance data block.

Local Data Stack

Data Block
Registers

Structuring the User Program

2-20
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

2.13 Avoiding Errors when Calling Blocks

STEP 7 modifies the registers of the S7-300/S7-400 CPU when various
instructions are executed. The contents of the DB and DI registers are, for
example, swapped when you call an FB. This allows the instance DB of the
called FB to be opened without losing the address of the previous instance
DB.

If you work with absolute addressing, errors can occur accessing data saved
in the registers. In some cases, the addresses in the register AR1 (address
register 1) and in the DB register are overwritten. This means that you could
read or write to the wrong addresses.

!
Warning

Risk of personal injury or damage to equipment

The following programming techniques can cause the contents of the DB
registers (DB and DI), the address register (AR1 and AR2), and the
accumulators (ACCU1 and ACCU2) to be modified:

� CALL FC, CALL FB, CALL multiple instance

� Accessing a DB using the complete absolute address (for example Accessing a DB using the complete absolute address (for example
DB20.DBW10)

� Accessing variables of a complex data type

In addition, you cannot use the RLO bit of the status word as an additional
(implicit) parameter when you call an FB or FC.

When using the programming techniques mentioned above, you must make
sure that you save and restore the contents yourself; otherwise errors may
occur.

The contents of the DB register can cause critical situations if you access the
absolute addresses of data using the abbreviated format. If, for example, you
assume that DB20 is open (and that its number is saved in the DB register),
you can specify DBX0.2 to access the data in bit 2 of byte 0 of the DB whose
address is entered in the DB register (in other words DB20). If, however, the
DB register contains a different DB number you access the wrong data.

You can avoid errors when accessing data of the DB register by using the
following methods to address data:

� Use the symbolic address

� Use the complete absolute address (for example DB20.DBX0.2)

If you use these addressing methods, STEP 7 automatically opens the correct
DB. If you use the AR1 register for indirect addressing, you must always
load the correct address in AR1.

STEP 7 Overwrites
Data in the DB
Register

Saving Correct
Data

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 2-21

In the following situations, the contents of the address register AR1 and the
DB register of the calling block are overwritten:

� When an FB is called, AR1 and the DB register of the calling block are
overwritten.

� After a call for an FC that transfers a parameter with a complex data type
(for example STRING, DATE_AND_TIME, ARRAY, STRUCT or UDT),
the content of AR1 and the DB register of the calling block are
overwritten.

� After you have assigned an actual parameter located in a DB to an FC
(for example DB20.DBX0.2), STEP 7 opens the DB (DB20) by
overwriting the content of the DB register.

In the following situations, the contents of the address register AR1 and the
DB register of the called block are overwritten:

� After an FB has addressed an in/out parameter with a complex data type
(for example STRING, DATE_AND_TIME, ARRAY, STRUCT or UDT),
STEP 7 uses the address register AR1 and the DB register to access data.
This overwrites the contents of both registers.

� After an FC has addressed a parameter (input, output or in/out) with a
complex data type (for example STRING, DATE_AND_TIME, ARRAY,
STRUCT or UDT), STEP 7 uses the address register AR1 and the DB
register to access data. This overwrites the contents of both registers.

When using function blocks, remember the following points:

� When calling an FB and a multiple instance, the address register AR2 is
written.

� If the address register AR2 is overwritten while an FB is being executed,
the correct execution of this FB can no longer be guaranteed.

Note

There are also other situations in addition to those listed above in which data
are overwritten.

Situations in
which Data is
Overwritten

Structuring the User Program

2-22
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Structuring the User Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-1

Organization Blocks and Executing the
Program

This chapter provides an overview of the following topics:

� Types of organization block

� Cyclic program execution

� Interrupt-driven program execution

You will find more detailed information about interrupt-driven program
execution in Chapter 4. Error OBs are described in greater detail in
Chapter 11.

For a detailed description of the individual organization blocks, refer to the
reference manual /235/.

Section Description Page

3.1 Types of Organization Block 3-2

3.2 Organization Blocks for the Startup Program 3-4

3.3 Organization Block for Cyclic Program Execution 3-5

3.4 Organization Block for Background Program Execution 3-7

3.5 Organization Blocks for Interrupt-Driven Program
Execution

3-8

3.6 Organization Blocks for Handling Errors 3-10

3.7 Interrupting Program Execution 3-12

3.8 Managing the Local Data (L Stack) 3-13

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

3

3-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

3.1 Types of Organization Block

STEP 7 provides you with various types of organization block (OB) with
which you can adapt the program to the requirements of your process, as
follows.

� Using the startup OBs, you can decide the conditions under which the
programmable logic controller goes through a complete restart or a
restart.

� With some of the OBs, you can execute a program at a certain point in
time or at certain intervals.

� Other OBs react to interrupts or errors detected by the CPU.

Organization blocks determine the order in which the individual program
sections are executed. The execution of an OB can be interrupted by calling a
different OB. Which OB is allowed to interrupt another OB depends on its
priority. Higher priority OBs can interrupt lower priority OBs. The lowest
priority is 1. The background OB has the lowest priority, namely 0.29.

The events that lead to an OB being called are known as interrupts. Table 3-1
shows the types of interrupt in STEP 7 and the priority of the organization
blocks assigned to them. Not all S7 CPUs have the complete range of
organization blocks and priority classes listed in the table below (see CPU
descriptions /70/ and /101/).

Table 3-1 Types of Interrupt and Priority Classes

Type of Interrupt Organization Blocks Priority Class

Main program scan OB1 1

Time-of-day interrupts OB10 to OB17 2

Time-delay interrupts OB20
OB21
OB22
OB23

3
4
5
6

Cyclic interrupts OB30
OB31
OB32
OB33
OB34
OB35
OB36
OB37
OB38

7
8
9
10
11
12
13
14
15

Overview

Priority

Types of Interrupt
and Organization
Blocks

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-3

Table 3-1 Types of Interrupt and Priority Classes

Type of Interrupt Priority ClassOrganization Blocks

Hardware interrupts OB40
OB41
OB42
OB43
OB44
OB45
OB46
OB47

16
17
18
19
20
21
22
23

Multicomputing interrupt OB60 Multicomputing 25

Asynchronous error
interrupts

OB80 Time error
OB81 Power supply error
OB82 Diagnostic interrupt
OB83 Insert/remove module
 interrupt
OB84 CPU hardware error
OB85 Priority class error
OB86 Rack failure
OB87 Communication error

26
(or 28 if the
asynchronous error
OB exists in the
startup program)

Background cycle OB90 291)

Startup OB100 Complete restart
OB101 Restart

27
27

Synchronous error interruptsOB121 Programming error
OB122 Access error

Priority of the OB
that caused the
error

1) The priority class 29 corresponds to priority 0.29. The background cycle has a lower
priority than the main program cycle.

The priority of organization blocks on S7-300 CPUs is fixed. With S7-400
CPUs, you can change the priority of the organization blocks OB10 through
OB47 and the priority in the RUN mode of organization blocks OB81
through OB87 with STEP 7. Priority classes 2 through 23 are permitted for
OB10 through OB87 and priority classes 24 through 26 for OB81 through
OB87. You can assign the same priority to several OBs. OBs with the same
priority are processed in the order in which their start events occur.

Every organization block has a start information field of 20 bytes that is
transferred by the operating system when the OB is started. The start
information specifies the start event of the OB, the date and time of the OB
start, errors that have occurred, and diagnostic events.

For example, OB40, a hardware interrupt OB, contains the address of the
module that caused the interrupt in its start information.

Changing the
Priority

Start Information
of an OB

Organization Blocks and Executing the Program

3-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

3.2 Organization Blocks for the Startup Program

There are two different types of startup: COMPLETE RESTART and
RESTART (see also Chapter 9). S7-300 CPUs only have the COMPLETE
RESTART type.

During startup, the operating system calls the appropriate startup OB, as
follows:

� In a complete restart, the complete restart OB (OB100)

� In a restart, the restart OB (OB101).

The startup OBs are started following the following events:

� POWER UP

� after switching from the STOP mode to the RUN mode

� when a complete restart or restart is triggered on the programming device
or using communication functions

Whether or not the complete restart or restart OB is called depends on the
type of startup specified during parameter assignment for manual and
automatic startup, the setting of the startup switch CRST/WRST, and whether
the mode selector has been set to POWER OFF (see also Section 8.3).

You can specify the conditions for starting up your CPU (initialization values
for RUN, startup values for I/O modules) by writing your program for the
startup in the organization blocks OB100 for complete restart or OB101 for a
restart.

There are no restrictions to the length of the startup program and no time
limit since the cycle monitoring is not active. Time- or interrupt-driven
execution is not possible in the startup program. During the start up, all
digital outputs have the signal state 0.

Types of Startup

Start Events

Startup Program

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-5

3.3 Organization Block for Cyclic Program Execution

Cyclic program execution is the “normal” type of program execution on
programmable logic controllers. The operating system calls OB1 cyclically
and with this call it starts cyclic execution of the user program.

Figure 3-1 illustrates the phases of cyclic program execution:

� The operating system starts the cycle monitoring time.

� The CPU reads the state of the inputs of the input modules and updates
the process image table of the inputs.

� The CPU processes the user program and executes the instructions
contained in the program.

� The CPU writes the values from the process image table of the outputs to
the output modules.

� At the end of a cycle, the operating system executes any tasks that are
pending, for example loading and deleting blocks, receiving and sending
global data (see Chapter 7).

Finally, the CPU returns to the start of the cycle and restarts the cycle
monitoring time.

Start of cycle time monitoring

Executes the user program (OB1 and
all the blocks called in it)

Writes the process image output table
to the modules.

Reads the inputs from the modules and
updates the data in the process image
input table

M
ai

n
pr

og
ra

m
 s

ca
n

Startup program

Operating system tasks

Figure 3-1 Main Program Scan

Introduction

Sequence of
Program
Execution

Organization Blocks and Executing the Program

3-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

So that the CPU has a consistent image of the process signals during cyclic
program execution, the CPU does not address the input (I) and output (Q)
address areas directly on the I/O modules but rather accesses an internal
memory area of the CPU that contains an image of the inputs and outputs.

You program cyclic program execution by writing your user program in OB1
and in the blocks called within OB1 using STEP 7.

Cyclic program execution begins as soon as the startup program is completed
without errors.

Cyclic program execution can be interrupted by the following:

� An interrupt

� A STOP command (mode selector, menu option on the programming
device, SFC 46 STP, SFB 20 STOP)

� A power outage

� The occurrence of a fault or program error

The cycle time is the time required by the operating system to run the cyclic
program and all the program sections that interrupt the cycle (for example,
executing other organization blocks) and system activities (for example,
updating the process image). The cycle time (TC) is not the same in every
cycle (see also Section 8.4).

Figure 3-2 illustrates different cycle times (TC1 ≠ TC2). In the current cycle,
OB1 is interrupted by a time-of-day interrupt.

Current cycle

OB10

OB1 OB1

Updates process
image input

table

Updates process
image output

table

Updates process
image input

table

TC1 TC2

Next cycle

Updates process
image input

table
OB1

Updates process
image output

table
OB1

Next cycle

Figure 3-2 Cycle Times of Different lengths

Process Images

Programming
Cyclic Program
Execution

Start Event

Interrupts

Cycle Time

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-7

3.4 Organization Block for Background Program Execution

If you have specified a minimum scan cycle time with STEP 7 and this is
longer than the actual scan cycle time (see Section 3.3), the CPU still has
processing time available at the end of the cyclic program. This time is used
to execute the background OB. If OB90 does not exist on your CPU, the CPU
waits until the specified minimum scan cycle time has elapsed.

The background OB has priority class 29, which corresponds to priority 0.29.
It is therefore the OB with the lowest priority. Its priority class cannot be
changed by reassigning parameters.

OB10

OB1 OB1
Updating of the
process input
image table

Updating of the
process image

output table

TC

Next cycle

OB10

OB90 OB90

Tmin

t

Priority

Twait

Tmin: the minimum cycle time specified with STEP 7

Twait: the time available before the start of the next cycle

TC: the actual cycle time required for a main program cycle

Figure 3-3 Example of the Background Cycle, the Main Program Cycle, and OB10

The run time of OB90 is not monitored by the CPU operating system so that
you can program loops of any length in OB90.
Make sure that the data you use in the background program are consistent by
taking the following into account in your program:

� The reset events of OB90 (see Reference Manual /235/)

� The asynchronous process image table updating of OB90

Description

Priority

Programming
OB90

Organization Blocks and Executing the Program

3-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

3.5 Organization Blocks for Interrupt-Driven Program Execution

STEP 7 provides different types of OBs that can interrupt OB1 at certain
intervals or when certain events occur.

You can configure these OBs either with STEP 7 or by programming a
system function (SFC). For more detailed information about configuring
OBs, refer to the STEP 7 user manual /231/. For more detailed information
about SFCs, refer to the reference manual /235/.

With STEP 7, you can select parts of your user program that do not need to
be executed cyclically and only execute these sections when the situation
makes it necessary. The user program can be divided up into “subroutines”
and distributed in different organization blocks. If you want your user
program to react to an important signal that seldom occurs (for example a
limit value sensor indicates that a tank is full), the section of program to be
executed when this signal is output can be written in an OB that is not
executed cyclically.

Apart from cyclic program execution, STEP 7 provides the following types
of program execution:

� Time-driven program execution

� Hardware interrupt-driven program execution

� Diagnostic interrupt-driven program execution

� Multicomputing interrupt-driven program execution

� Error handling

Table 3-2 Organization Blocks that Can Interrupt OB1

Types of OB Start Events

Time-of-day interrupt
OBs
(OB10 to OB17)

Date, time-of-day

Time-delay OBs (OB20
to OB23)

Delay time after programmed events

Cyclic interrupt OBs
(OB30 to OB38)

Intervals (1 ms to 1 minute)

Hardware interrupt OBs
(OB40 to OB47)

Process signal from an I/O module to the CPU or interrupt
from a function module

Synchronous error OBs
(OB121 and OB122)

Errors in the user program (programming errors and
access errors)

Asynchronous error OBs
(OB80 to OB87)

Priority class errors or faults on the PLC.

Multicomputing interrupt
OB(OB60)

SFC35 call

Overview

Non-Cyclic
Program
Execution

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-9

With system functions (SFCs), you can mask, delay or disable the start events
for several OBs. Refer to Table 3-3.

Masking Start
Events

Organization Blocks and Executing the Program

3-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

3.6 Organization Blocks for Handling Errors

The errors that can be detected by the S7 CPUs and to which you can react
with the help of organization blocks can be divided into two basic categories:

� Synchronous errors: these errors can be assigned to a specific part of the
user program. The error occurs during the execution of a particular
instruction. If the corresponding synchronous error OB is not loaded, the
CPU changes to the STOP mode when the error occurs.

� Asynchronous errors: these errors cannot be directly assigned to the user
program being executed. These are priority class errors or faults on the
programmable logic controller (for example a defective module). If the
corresponding asynchronous error OB is not loaded, the CPU changes to
the STOP mode when the error occurs (exception OB81).

Figure 3-4 shows the two categories of error OBs and describes the types of
errors that can occur.

OB121 Programming error (e.g. DB is not
loaded)

OB122 I/O access error (e.g. accessing an
I/O module that does not exist)

Asynchronous Errors Synchronous Errors

Error-OBError OB

OB80 Time error (e.g. cycle time exceeded)
OB81 Power supply error (e.g. battery problem)
OB82 Diagnostic interrupt (e.g. short circuit in

an input module)
OB83 Insert/remove module interrupt (e.g. an

input module has been removed)
OB84 CPU hardware fault (fault on the interface

to the MPI network)
OB85 Priority class error (e.g. OB is not loaded)
OB86 Rack failure
OB87 Communication error (e.g. wrong

identifier in global data communication)

Figure 3-4 Types of Error

Types of Errors

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-11

Synchronous errors occur during the execution of a particular instruction.
When these errors occur, the operating system makes an entry in the I stack
and starts the OB for synchronous errors.

The error OBs called as a result of synchronous errors are executed as part of
the program in the same priority class as the block that was being executed
when the error was detected. OB121 and OB122 can therefore access the
values in the accumulators and other registers as they were at the time when
the interrupt occurred. You can use these values to react to an error and then
return to your normal program (for example, if an access error occurs on an
analog input module, you can specify a substitute value in OB122 using
SFC 44 RPL_VAL, see Section 11.7). The local data of the error OBs, do,
however, take up additional space in the L stack of this priority class.

With S7-400 CPUs, one synchronous error OB can start a further
synchronous error OB. This is not possible with S7-300 CPUs.

If the operating system of the CPU detects an asynchronous error, it starts the
corresponding error OB (OB80 to OB87). The OBs for asynchronous errors
have the highest priority and they cannot be interrupted by other OBs. If
more than one asynchronous error occurs, the error OBs are executed in the
order in which the errors occurred.

Using system functions (SFCs), you can mask, delay, or disable the start
events for some of the error OBs. For more detailed information about these
SFCs and the organization blocks, refer to the reference manual /235/.

Table 3-3 System Functions for Masking, Disabling and Delaying Start Events

Type of Error OB SFC Function of the SFC

Synchronous error
OBs

SFC36 MSK_FLT Masks individual synchronous errors. Masked errors do
not start an error OB and do not trigger programmed
reactions.

SFC37
DMSK_FLT

Unmasks synchronous errors.

Asynchronous error
OBs

SFC39 DIS_IRT Disables all interrupts and asynchronous errors. Disabled
errors do not start an error OB in any of the subsequent
CPU cycles and do not trigger programmed reactions.

SFC40 EN_IRT Enables interrupts and asynchronous errors.

SFC41 DIS_AIRT Delays higher priority interrupts and asynchronous
errors until the end of the OB.

SFC42 EN_AIRT Enables higher priority interrupts and asynchronous
errors.

Using DBs for
Synchronous
Errors

Using OBs for
Asynchronous
Errors

Masking Start
Events

Organization Blocks and Executing the Program

3-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

3.7 Interrupting Program Execution

The operating system starts program execution by calling OB1. OB1 has the
lowest priority. This means that any other OB call is capable of interrupting
the cyclic program.

When the operating system recognizes a start event for an OB with higher
priority, the execution of the program is interrupted after the currently active
instruction. The operating system saves the data of the interrupted block that
will be required when the operating system resumes execution of the
interrupted block.

An OB that interrupts the execution of another block can also call functions
(FCs) and function blocks (FBs). The number of nested calls depends on the
particular CPU. Refer to the CPU descriptions /70/ and /101/ for the
maximum nesting depth of your particular CPU.

If program execution is interrupted by a higher priority OB, the operating
system saves the current contents of the accumulators and address registers
and the number and size of the open data blocks in the interrupt stack (I
stack).

Once the new OB has been executed, the operating system loads the
information from the I stack and resumes execution of the interrupted block
at the point at which the interrupt occurred.

When the CPU is in the STOP mode, you can display the I stack on a
programming device using STEP 7. This allows you to find out why the CPU
changed to the STOP mode.

Introduction

Sequence of
Program
Execution

Saving the Data

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 3-13

3.8 Managing Local Data (L Stack)

When you are programming organization blocks, you can declare temporary
variables (TEMP), that are only available when the block is executed and are
then overwritten again (see also Section 2.4). In addition to this, every
organization block also requires 20 bytes of local data for its start
information.

The CPU has a limited amount of memory for the temporary variables (local
data) of blocks currently being executed. The size of this memory area, (the
local stack) depends on the particular CPU (refer to the CPU descriptions
/70/ and /101/). The local data stack is divided up equally among the priority
classes (default). This means that every priority class has its own local data
area which ensures that the high priority classes and their OBs have space for
local data.

Figure 3-5 shows an example of the L stack in which OB1 is interrupted by
OB10 that is, in turn, interrupted by OB81.

OB1 FB FC

FB

SFC

OB10

OB81
needs 20 bytes
in the L stack

L stack

Priority class 2

Priority class 26

Priority
class 1

needs 20 bytes
in the L stack

needs 20 bytes
in the L stack

Figure 3-5 Assignment of Local Data to the Priority Classes

!
Caution

S7-CPUs change to the STOP mode if the permitted L stack size for a
program is exceeded.

All the temporary variables (TEMP) of an OB and its associated blocks are
saved in the L stack. If you use too many nesting levels when executing your
blocks, the L stack can overflow.

Test the L stack (the temporary variables) in your program.

Overview

Local Data Stack

Organization Blocks and Executing the Program

3-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Different priority classes require different amounts of memory in the local
data stack. By assigning parameters with STEP 7, you can select the size of
the local data area for the individual priority classes on S7-400 CPUs. If you
are not using certain priority classes you can use their areas for other priority
classes on S7-400 CPUs. Deactivated OBs are ignored during program
execution and save cycle time.

On S7-300 CPUs, each priority class is assigned a fixed number of local data
(256 bytes) and this setting cannot be changed.

Assigning Local
Data to Priority
Classes

Organization Blocks and Executing the Program

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 4-1

Handling Interrupts

This chapter describes the interrupt OBs for time-of-day interrupts,
time-delay interrupts, cyclic interrupts and hardware interrupts.

The use of synchronous and asynchronous error OBs is described in
Chapter 11.

For a detailed description of the individual organization blocks, refer to the
reference manual /235/. For further information about assigning parameters
for interrupts, refer to the manuals /70/ and /101/.

Section Description Page

4.1 Using Interrupt OBs 4-1

4.2 Time-of-Day Interrupts (OB10 to OB17) 4-3

4.3 Time-Delay Interrupts (OB20 to OB23) 4-5

4.4 Cyclic Interrupts (OB30 to OB38) 4-6

4.5 Hardware Interrupts (OB40 to OB47) 4-8

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

4

4-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

4.1 Using Interrupt OBs

By providing interrupt OBs, the S7 CPUs allow the following:

� Program sections can be executed at certain times or intervals (time
driven)

� Your program can react to external signals from the process.

The cyclic user program does not need to query whether or not interrupt
events have occurred. If an interrupt does occur, the operating system makes
sure that the user program in the interrupt OB is executed so that there is a
programmed reaction to the interrupt by the programmable logic controller,

Table 4-1 shows how the different types of interrupt can be used.

Table 4-1 Examples of Applications

Type of
Interrupt

Interrupt
OBs

Examples of Applications

Time-of-day
interrupt

OB10 to
OB17

Calculation of the total flow into a blending
process at the end of a shift

Time-delay
interrupt

OB20 to
OB23

Controlling a fan that must continue to run for
20 seconds after a motor is switched off

Cyclic
interrupt

OB30 to
OB38

Scanning a signal level for a closed-loop
control system

Hardware
interrupt

OB40 to
OB47

Signaling that the maximum level of a tank has
been reached

To allow the operating system to execute an interrupt OB, you must perform
the following steps:

� Create the required interrupt OB as an object in your S7 program using
STEP 7.

� Write the program to be executed in the interrupt OB in the block you
have created.

� Download the interrupt OB to the CPU as part of your user program.

Interrupts can be assigned parameters with STEP 7. By assigning parameters,
you can, for example, deselect interrupt OBs or modify priority classes.

Interrupt-Driven
Program
Execution

Types of Interrupt
and Applications

Using Interrupt
OBs

Assigning
Parameters for
Interrupts

Handling Interrupts

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 4-3

4.2 Time-of-Day Interrupts (OB10 to OB17)

The S7 CPUs provide the time-of-day interrupt OBs that can be executed at a
specified date or at certain intervals.

Time-of-day interrupts can be triggered as follows:

� Once at a particular time (specified in absolute form with the date)

� Periodically by specifying the start time and the interval at which the
interrupt should be repeated (for example every minute, every hour,
daily).

To allow the CPU to start a time-of-day interrupt, you must first set and then
activate the time-of-day interrupt. There are three ways of starting the
interrupt:

� Automatic start of the time-of-day interrupt by assigning appropriate
parameters with STEP 7 (parameter field “time-of-day interrupts”)

� Setting and activating the time-of-day interrupt with SFC28 SET_TINT
and SFC30 ACT_TINT from within the user program

� Setting the time-of-day interrupt by assigning parameters with STEP 7
and activating the time-of-day interrupt with SFC30 ACT_TINT in the
user program.

To query which time-of-day interrupts are set and when they are set to occur,
you can do one of the following:

� Call SFC31 QRY_TINT

� Request the list “interrupt status of the system status list” (see
Chapter 11).

You can deactivate time-of-day interrupts that have not yet been executed
with SFC29 CAN_TINT. Deactivated time-of-day interrupts can be set again
using SFC28 SET_TINT and activated with SFC30 ACT_TINT.

All eight time-of-day interrupt OBs have the same priority class (2) as default
(see also Section 3.1) and are therefore processed in the order in which their
start event occurs. You can, however, change the priority class by selecting
suitable parameters.

Description

Starting

Querying

Deactivating

Priority

Handling Interrupts

4-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

You can change the time-of-day set for the interrupt as follows:

� A clock master synchronizes the time for masters and slaves.

� SFC0 SET_CLK can be called in the user program to set a new time.

Table 4-2 shows how time-of-day interrupts react after the time has been
changed.

Table 4-2 Time-of-Day Interrupts After Changing the Time

If... Then...

If the time was moved ahead and one or
more time-of-day interrupts were skipped,

OB80 is started and the time-of-day
interrupts that were skipped are entered in
the start information of OB80.

You have deactivated the skipped
time-of-day interrupts in OB80,

the skipped time-of-day interrupts are no
longer executed.

You have not deactivated the skipped
time-of-day interrupts in OB80,

the first skipped time-of-day interrupt is
executed, the other skipped time-of-day
interrupts are ignored.

By moving the time back, the start events
for the time-of-day interrupts occur again,

the execution of the time-of-day interrupt
is not repeated.

Time-of-day interrupts can only be executed when the interrupt has been
assigned parameters and a corresponding organization block exists in the user
program. If this is not the case, an error message is entered in the diagnostic
buffer and an asynchronous error routine is executed (OB80, see Chapter 11).

Periodic time-of-day interrupts must correspond to a real date. Repeating an
OB10 monthly starting on the 31st January is not possible. In this case, the
OB would only be started in the months that have 31 days.

A time-of-day interrupt activated during startup (complete restart or restart)
is only executed after the startup is completed.

Time-of-day interrupt OBs that are deselected by the parameter assignment,
cannot be started. The CPU recognizes a programming error and changes to
the STOP mode.

Following a complete restart, time-of-day interrupts must be set again (for
example using SFC30 ACT_TINT in the startup program).

Changing the Set
Time

Reaction to
Changing the Time

Note

Handling Interrupts

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 4-5

4.3 Time-Delay Interrupts (OB20 to OB23)

The S7-CPUs provide time-delay OBs with which you can program the
delayed execution of parts of your user program.

Time-delay interrupts are triggered when the delay time specified in SFC32
SRT_DINT has expired.

To start a time-delay interrupt, you must specify the delay time in SFC32
after which the corresponding time-delay interrupt OB is called. For the
maximum permitted length of the delay time, refer to the individual CPU
descriptions /70/ and /101/.

The default priority for the time-delay interrupt OBs is priority class 3 to 6
(see also Section 3.1). You can assign parameters to change the priority
classes.

Time-delay interrupts can only be executed when the corresponding
organization block exists in the CPU program. If this is not the case, an error
message is entered in the diagnostic buffer and an asynchronous error routine
is executed (OB80, see Chapter 11).

Time-delay interrupt OBs that were deselected by the parameter assignment
cannot be started. The CPU recognizes a programming error and changes to
the STOP mode.

Description

Starting

Priority

Note

Handling Interrupts

4-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

4.4 Cyclic Interrupts (OB30 to OB38)

The S7-CPUs provide cyclic interrupt OBs that interrupt cyclic program
execution at certain intervals.

Cyclic interrupts are triggered at intervals. The time at which the interval
starts is the mode change from STOP to RUN.

To start a cyclic interrupt, you must specify the interval in the cyclic
interrupts parameter field using STEP 7. The interval is always a whole
multiple of the basic clock rate of 1 ms.

Interval = n � basic clock rate 1 ms

Each of the nine available cyclic interrupt OBs has a default interval (see
Table 4-3). The default interval becomes effective when the cyclic interrupt
OB assigned to it is loaded. You can, however, assign parameters to change
the default values. For the upper limit of the intervals for cyclic interrupts,
refer to the CPU descriptions /70/ and /101/.

To avoid cyclic interrupts of different cyclic interrupt OBs being started at
the same point and possibly causing a time error (cycle time exceeded) you
can specify a phase offset. The phase offset ensures that the execution of a
cyclic interrupt is delayed by a certain time after the interval has expired.

Phase offset = m � basic clock rate (where 0 � m < n)

Figure 4-1 shows how a cyclic interrupt OB with phase offset is executed in
contrast to a cyclic interrupt without phase offset.

0 8 16 24 32 40 4821 37 53

Clock pulse:

OB38
(n=8, m=0)

OB37
(n=16, m=5)

t [ms]

Figure 4-1 Executing Cyclic Interrupts with and without Phase Offset

Description

Starting

Phase Offset

Handling Interrupts

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 4-7

Table 4-3 shows the default intervals and priority classes of the cyclic
interrupt OBs. You can assign parameters to change the interval and the
priority class.

Table 4-3 Intervals and Priority Classes of the Cyclic Interrupt OBs (Defaults)

Cyclic Interrupt OBs Interval in ms Priority Class

OB30 5000 7

OB31 2000 8

OB32 1000 9

OB33 500 10

OB34 200 11

OB35 100 12

OB36 50 13

OB37 20 14

OB38 10 15

When you specify the intervals, make sure that there is enough time between
the start events of the individual cyclic interrupts for processing the cyclic
interrupts themselves.

If you assign parameters to deselect cyclic interrupt OBs, they can no longer
be started. The CPU recognizes a programming error and changes to the
STOP mode.

Priority

Note

Handling Interrupts

4-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

4.5 Hardware Interrupts (OB40 to OB47)

The S7 CPUs provide hardware interrupt OBs that react to signals from the
modules (for example signal modules SMs, communications processors CPs,
function modules FMs). With S7, you can decide which signal from a
configurable digital or analog module starts the OB. With CPs and FMs, use
the appropriate parameter assignment dialogs.

Hardware interrupts are triggered when a signal module with hardware
interrupt capability and with an enabled hardware interrupt passes on a
received process signal to the CPU or when a function module of the CPU
signals an interrupt.

Each channel of a signal module with hardware interrupt capability can
trigger a hardware interrupt. For this reason, you must specify the following
in the parameter records of signal modules with hardware interrupt capability
using STEP 7:

� What will trigger a hardware interrupt.

� Which hardware interrupt OB will be executed (the default for executing
all hardware interrupts is OB40).

Using STEP 7, you activate the generation of hardware interrupts on the
function blocks. You assign the remaining parameters in the parameter
assignment dialogs of these function modules.

The default priority classes for the hardware interrupt OBs are 16 to 23 (see
also Section 3.1). You can assign parameters to change the priority classes.

Hardware interrupts can only be executed when the corresponding
organization block is located in the CPU program. If this is not the case, an
error message is entered in the diagnostic buffer and an asynchronous error
routine is executed (see Chapter 11).

If you have deselected hardware interrupt OBs in the parameter assignment,
these cannot be started. The CPU detects a programming error and changes
to the STOP mode.

Description

Assigning
Parameters

Priority

Note

Handling Interrupts

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-1

Memory Areas of S7 CPUs

This chapter describes the memory areas of the S7-300 and S7-400 CPUs.

Section Description Page

5.1 Memory Areas of the CPU 5-2

5.2 Absolute and Symbolic Addressing 5-5

5.3 Storing Programs on the CPU 5-6

5.4 Retentive Memory Areas on S7-300 CPUs 5-8

5.5 Retentive Memory Areas on S7-400 CPUs 5-10

5.6 Process Image Input/Output Tables 5-11

5.7 Local Data Stack 5-13

What Does This
Chapter Describe?

Chapter
Overview

5

5-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

5.1 Memory Areas of the CPU

The memory of the S7 CPUs has three basic areas:

� The load memory is used for user programs without symbolic address
assignments or comments (these remain in the memory of the
programming device). The load memory can be either RAM or FEPROM.

Blocks identified as being not relevant to the running of your program are
all located in the load memory.

� The work memory (integrated RAM) contains the parts of the S7 program
relevant for running your program. The program is executed only in the
work memory and system memory areas.

� The system memory (RAM) contains the memory elements provided by
every CPU for the user program, such as the process image input and
output tables, bit memory, timers and counters. The system memory also
contains the block stack and interrupt stack.

In addition to the areas above, the system memory of the CPU also
provides temporary memory (local data stack) that contains temporary
data for a block when it is called. This data only remains valid as long as
the block is active.

Figure 5-1 illustrates the memory areas of the CPU.

Local data stack

process image input/output tables,
bit memory, timers, counters

Dynamic load memory (RAM,
integrated or on a memory card):
contains the user program

Retentive load memory (FEPROM,
on memory card or integrated in S7-300
CPUs):
contains the user program

Work memory (RAM)
contains the executable user program
(for example logic and data blocks)

System memory (RAM) contains:

CPU

Block stack

Interrupt stack

Diagnostic buffer

Figure 5-1 Memory Areas of S7 CPUs

Distribution of the
Memory Areas

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-3

With S7-300 CPUs, the load memory can have both an integrated RAM as
well as an integrated FEPROM section (refer to the CPU descriptions /70/
and /101/). Areas in data blocks can be declared as being retentive by
assigning parameters with STEP 7 (see Section 5.4).

Use of a memory card (RAM or FEPROM) is required to expand the load
memory on S7-400 CPUs. The integrated load memory is a RAM memory
and is used essentially for loading and correcting blocks individually.

The structure of the load memory (RAM and FEPROM area) affects the
possibilities for downloading your user program or for downloading
individual blocks. Table 5-1 shows how the program and blocks are
downloaded:

Table 5-1 Load Memory Structure and What can be Downloaded

Memory Type Possible Functions Loading Method

RAM Downloading and deleting
individual blocks

PG-CPU connection

Downloading and deleting
an entire S7 program

PG-CPU connection

Downloading individual
blocks later

PG-CPU connection

FEPROM integrated
(only on S7-300) or
plug-in

Downloading entire S7
programs

PG-CPU connection

FEPROM plug-in Downloading entire S7
programs

Uploading the FEPROM to the
PG and plugging in the
memory card in the CPU
Downloading the FEPROM to
the CPU

Programs stored in RAM are lost when you reset the CPU memory (MRES)
or if you remove the CPU or RAM memory card.

Programs saved on FEPROM memory cards are not erased by a CPU
memory reset and are retained even without battery backup (transport,
backup copies).

Special Features
of the S7-300

Special Features
of the S7-400

Consequences of
the Load Memory
Structure

Memory Areas of S7 CPUs

5-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

The memory of the S7 CPUs is divided into address areas (see Table 5-2).
Using instructions in your program, you address the data directly in the
corresponding address areas. To find out which address areas are available on
your CPU, refer to the CPU descriptions /70/, /101/ or the instruction lists
/72/, /102/.

Table 5-2 Address Areas

Address Area
Access in Units of the

Following Size:
S7

Notation
Description

Process-image inputInput (bit)
Input byte
Input word
Input double word

I
IB
IW
ID

At the beginning of the scan cycle, the CPU reads the
inputs from the input modules and records the values
in this area.

Process-image
output

Output (bit)
Output byte
Output word
Output double word

Q
QB
QW
QD

During the scan cycle, the program calculates output
values and places them in this area. At the end of the
scan cycle, the CPU sends the calculated output
values to the output modules.

Bit memory Memory (bit)
Memory byte
Memory word
Memory double word

M
MB
MW
MD

This area provides storage for interim results
calculated in the program.

Timer Timer (T) T This area provides storage for timers.

Counter Counter (C) C This area provides storage for counters.

Data block Data block opened with
“OPN DB”:
Data bit
Data byte
Data word
Data double word

DB

DBX
DBB
DBW
DBD

Data blocks contain information for the program.
They can be defined for general use by all logic
blocks (shared DBs) or they are assigned to a specific
FB or SFB (instance DB).

Data block opened with
“OPN DI”:
Data bit
Data byte
Data word
Data double word

DI

DIX
DIB
DIW
DID

Local (temporary)
data

Local data bit
Local data byte
Local data word
Local data double word

L
LB
LW
LD

This area contains the temporary data of a block while
the block is being executed. The L stack also provides
memory for transferring block parameters and for
recording interim results from Ladder Logic
networks.

I/O:
external inputs

Peripheral input byte
Peripheral input word
Peripheral input double
word

PIB
PIW
PID

The peripheral input and output areas allow direct
access to central and distributed input and output
modules (DP, see Section 6.3.)

I/O:
external outputs

Peripheral output byte
Peripheral output word
Peripheral output double
word

PQB
PQW
PQD

Using the Memory
Areas

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-5

5.2 Absolute and Symbolic Addressing

You can access addresses in a STEP 7 program using either absolute
addressing (for example I 1.7) or using symbolic addressing (for example
motor contact 1).

The absolute address of a memory location contains the address identifier
(for example “M”) and the type of access to the data area: B (byte), W (word
or two bytes) or D (double word or four bytes). If you do not specify B, W or
D, it is assumed that bit access is required. The absolute address also contains
the number of the first byte and the bit number for bit access.

Table 5-3 Examples of Absolute Addressing

Absolute
Address

Description

MD 100 This relates to a double word (a double word consists of 4 bytes),
beginning in memory byte 100 (in other words bytes 100, 101, 102 and
103)

M 100.1 Relates to bit 1 in memory byte 100

By assigning a symbol to an address, you can identify the function of the
address and make your program easier to understand. The following
distinction is made when you assign a symbolic name:

� Global symbols, in other words the symbolic name is valid for all blocks
in an S7 program; these are declared in the symbol table of the S7
program.

� Block-local symbols, in other words the symbolic name is valid for only
one block; this is declared in the local data (for example parameters) in
the declaration table of the block.

Types of
Addressing

Absolute
Addressing

Symbolic
Addressing

Memory Areas of S7 CPUs

5-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

5.3 Storing Programs on the CPU

When you download the user program from the programming device to the
CPU, only the logic and data blocks are loaded in the load and work memory
of the CPU.

The symbolic address assignment (symbol table) and the block comments
remain on the programming device.

To ensure fast execution of the user program and to avoid unnecessary load
on the work memory that cannot be expanded, only the parts of the blocks
relevant for program execution are loaded in the work memory (see
Figure 5-2). Parts of blocks that are not required for executing the program
(for example block headers) remain in the load memory.

The load memory can be expanded using memory cards. For the maximum
size of your load memory, refer to the CPU descriptions /70/ and /101/.

Depending on whether you select a RAM or an FEPROM memory card to
expand the load memory, the load memory may react differently during
downloading, reloading or memory reset (see also Section 5.1).

Comments

Symbols

Programming
device

Saved on the hard disk

Entire logic
blocks

Entire data
blocks

Load memory Work memory

S7-400
S7-300

Parts of logic and
data blocks
relevant to

program execution

Logic blocks

Data blocks

Figure 5-2 Downloading the Program to the CPU Memory

Downloading the
User Program

Distribution of the
Program in the
Load and Work
Memory

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-7

The CPU stores data blocks that were created using system functions (for
example SFC22 CREAT_DB) in the user program only in the work memory
and not in the load memory.

Data blocks that were programmed in a source file as part of an STL program
can be identified as “Not Relevant for Execution” (keyword UNLINKED).
This means that when they are downloaded to the CPU, the DBs are stored
only in the load memory. The content of such blocks can, if necessary, be
copied to the work memory using SFC20 BLKMOV.

This technique saves space in the work memory. The expandable load
memory is then used as a buffer (for example for formulas for a mixture;
only the formula for the next batch is loaded in the work memory).

Data Blocks
Created with SFCs

Data Blocks Not
Relevant for
Program
Execution

Memory Areas of S7 CPUs

5-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

5.4 Retentive Memory Areas on S7-300 CPUs

If a power outage occurs or the CPU memory is reset (MRES), the memory
of the S7-300 CPU (dynamic load memory (RAM), work memory and
system memory) is reset and all the data previously contained in these areas
is lost. With S7-300 CPUs, you can protect your program and its data in the
following ways:

� You can protect all the data in the load memory, work memory and in
parts of the system memory with battery backup.

� You can store your program in the FEPROM (either memory card or
integrated on the CPU, refer to the CPU descriptions /70/).

� You can store a certain amount of data depending on the CPU in an area
of the non-volatile NVRAM.

Your S7-300 CPU provides an area in the NVRAM (non-volatile RAM) (see
Figure 5-3). If you have stored your program in the FEPROM of the load
memory, you can save certain data (if there is a power outage or when the
CPU changes from STOP to RUN) by configuring your CPU accordingly. To
do this set the CPU so that the following data are saved in the non-volatile
RAM:

� Data contained in a DB (This is only useful if you have also stored your
program in an FEPROM of the load memory.)

� Values of timers and counters

� Data saved in bit memory.

On every CPU, you can save a certain number of timers, counters and
memory bits. A specific number of bytes is also available in which the data
contained in DBs can be saved. For more detailed information, refer to the
CPU descriptions /70/.

The MPI address of your CPU is stored in the NVRAM. This makes sure that
your CPU is capable of communication following a power outage or memory
reset.

Static load
memory

(FEPROM) Plug-in FEPROM
cartridge (optional)

Dynamic load
memory (RAM) Work

memory
System
memory

Configurable
memory

(NVRAM)

CPU

Figure 5-3 Non-Volatile Memory Area on S7-300 CPUs

Overview

Using the NVRAM

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-9

By using a backup battery, the data of the load memory and the work
memory are protected from loss in case of a power outage. If you configure
your CPU so that timers, counters and memory bits are saved in the
NVRAM, this information is also retained regardless of whether you use a
backup battery or not.

When you configure your CPU with STEP 7, you can decide which memory
areas will be retentive.

The amount of memory that can be configured in the NVRAM depends on
the CPU you are using. You cannot back up more data than specified for your
CPU. For more detailed information about retentive memory, refer to the
manual /70/.

Using Battery
Backup to Protect
Data

Configuring the
Data of the NVRAM

Memory Areas of S7 CPUs

5-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

5.5 Retentive Memory Areas on S7-400 CPUs

If you operate your system without battery backup, when a power outage
occurs or when you reset the CPU memory (MRES), the memory of the
S7-400 CPU (dynamic load memory (RAM), work memory and system
memory) is reset and all the data contained in these areas is lost.

Without battery backup, only a complete restart is possible and there are no
retentive memory areas. Following a power outage, only the MPI parameters
(for example the MPI address of the CPU) are retained. This means that the
CPU remains capable of communication following a power outage or
memory reset.

If you use a battery to back up your memory:

� The entire content of all RAM areas is retained when the CPU restarts
following a power outage.

� During a complete restart, the address areas for memory bits, timers, and
counters is cleared. The contents of data blocks are retained.

� The contents of the RAM work memory are also retained apart from
memory bits, timers and counters that were designed as non-retentive.

You can declare a certain number of memory bits, timers, and counters as
retentive (the number depends on your CPU). During a complete restart when
you are using a backup battery, this data is also retained during a complete
restart.

When you assign parameters with STEP 7, you define which memory bits,
timers, and counters should be retained during a complete restart. You can
only back up as much data as is permitted by your CPU.

For more detailed information about defining retentive memory areas, refer
to the manual /101/.

Operation Without
Battery Backup

Operation With
Battery Backup

Configuring
Retentive Data
Areas

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-11

5.6 Process Image Input/Output Tables

If the input (I) and output (Q) address areas are accessed in the user program,
the program does not scan the signal states on the digital signal modules but
accesses a memory area in the system memory of the CPU and distributed
I/Os. This memory area is known as the process image.

The process image is divided into two parts: the process image input table
and the process image output table.

The CPU can only access the process image of the modules that you have
configured with STEP 7 or that are obtainable using the default addressing.

The process image is updated cyclically by the operating system. At the
beginning of cyclic program execution, the signal states of the input modules
are transferred to the process image input table. At the end of each program
cycle, the signal states are transferred from the process image output table to
the output modules.

....

Execute the user program
(OB1 and all the blocks called in it)

Transfer the values of the process image
output table to the modules

Read the inputs from the modules and update
the data in the process image input table

M
ai

n
pr

og
ra

m
 s

ca
n

Startup program

...

Figure 5-4 Updating the Process Image

Introduction

Prior Requirement

Updating the
Process Image

Memory Areas of S7 CPUs

5-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Compared with direct access to the input/output modules, the main advantage
of accessing the process image is that the CPU has a consistent image of the
process signals for the duration of one program cycle. If a signal state on an
input module changes while the program is being executed, the signal state in
the process image is retained until the process image is updated again at the
beginning of the next cycle. Access to the process image also requires far less
time than direct access to the signal modules since the process image is
located in the internal memory of the CPU.

With some CPUs, you can create and update up to eight sections of the
process image tables (refer to the CPU descriptions /70/ and /101/). This
means that the user program can update sections of the process image table,
when necessary, independent of the cyclic updating of the process image
table.

You define the process image sections with STEP 7. SFCs are used to update
a section of the process image.

By using the following SFCs, the user program can update an entire process
image table or sections of a process image table:

� SFC26 UPDAT_PI updates the process image input table.

� SFC27 UPDAT_PO updates the process image output table.

Note

On S7-300 CPUs, inputs and outputs that are not used for the process image
tables can be used as additional bit memory areas. Programs that make use
of this option cannot run on S7-400 CPUs.

Advantages

Updating Sections
of the Process
Images

Using SFCs

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 5-13

5.7 Local Data Stack

The local data stack (L stack) is a memory area in the system memory of the
CPU (see also Section 3.8). It contains the following:

� The temporary variables of the local data of blocks

� The start information of the organization blocks

� Information about transferring parameters

� Interim results of the logic in Ladder Logic programs

The size of the local data stack depends on the particular CPU (refer to the
CPU descriptions /70/ and /101/). The local data stack is divided up equally
among the priority classes (default). This means that each priority class has
its own local data area which ensures that higher priority classes and their
OBs also have space for their local data (see also Section 3.8).

L Stack

Size

Memory Areas of S7 CPUs

5-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Memory Areas of S7 CPUs

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 6-1

Addressing Peripheral I/Os

This chapter describes how the peripheral I/O data areas are addressed (user
data, diagnostic and parameter data).

For further information about the system functions mentioned in this chapter,
refer to the reference manual /235/.

Section Description Page

6.1 Access to Process Data 6-2

6.2 Access to the Peripheral Data Area 6-4

6.3 Special Features of the Distributed Peripheral I/Os (DP) 6-6

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

6

6-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

6.1 Access to Process Data

The CPU can access inputs and outputs of central and distributed digital
input/output modules either indirectly using the process image tables or
directly via the backplane/P bus.

You assign the addresses used in your program to the modules when you
configure the modules with STEP 7, as follows:

� With central I/O modules: arrangement of the rack and assignment of the
modules to slots in the configuration table.

� With distributed I/Os (SINEC L2-DP): arrangement of the DP slaves in
the configuration table “master system” with the L2 address and
assignment of the modules to slots.

By configuring the modules, it is no longer necessary to set addresses on the
individual modules using switches. As a result of the configuration, the PG
sends data to the CPU that allows the CPU to recognize the modules assigned
to it.

There is a separate address area for inputs and outputs. This means that the
address of a peripheral area must not only include the byte or word access
type but also the I identifier for inputs and Q identifier for outputs.

To find out which address areas are possible on individual modules, refer to
the manuals /70/, /71/ and /101/.

Table 6-1 Peripheral I/O Address Areas

Address Area
Access With Units of the

Following Size:
S7 Notation

Peripheral area: inputs Peripheral input byte
Peripheral input word
Peripheral input double word

PIB
PIW
PID

Peripheral area: outputs Peripheral output byte
Peripheral output word
Peripheral output double word

PQB
PQW
PQD

Overview

Addressing
Modules

Peripheral I/O
Addressing

Addressing Peripheral I/Os

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 6-3

The module start address is the lowest byte address of a module. It represents
the start address of the user data area of the module and is used in many
cases to represent the entire module.

The module start address is, for example, entered in process interrupts,
diagnostic interrupts, insert/remove module error interrupts and power supply
error interrupts in the start information of the corresponding organization
block and is used to identify the module that initiated the interrupt.

Module Start
Address

Addressing Peripheral I/Os

6-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

6.2 Access to the Peripheral Data Area

The peripheral data area can be divided into the following:

� User data and

� Diagnostic and parameter data.

Both areas have an input area (can only be read) and an output area (can only
be written).

User data is addressed with the byte address (for digital signal modules) or
the word address (for analog signal modules) of the input or output area. User
data can be accessed with load and transfer commands, communication
functions (operator interface access) or by transferring the process image.
User data can be as follows:

� Digital and analog input/output signals from signal modules

� Control and status information from function modules

� Information for point-to-point and bus connections from communication
modules (only S7-300)

When transferring user data, a consistency of a maximum of 4 bytes can be
achieved (with the exception of DP standard slaves, see Section 6.3). If you
use the “transfer double word” statement, four contiguous and unmodified
(consistent) bytes are transferred. If you use four separate “transfer input
byte” statements, a hardware interrupt OB could be inserted between the
statements and transfer data to the same address do that the content of the
original 4 bytes is changed before they were all transferred.

The diagnostic and parameter data of a module cannot be addressed
individually but are always transferred in the form of complete data records.
This means that consistent diagnostic and parameter data are always
transferred.

The diagnostic and parameter data is accessed using the start address of the
module and the data record number. Data records are divided into input and
output data records. Input data records can only be read, output data records
can only be written. You can access data records using system functions or
communication functions (user interface). Table 6-2 shows the relationship
between data records and diagnostic and parameter data.

Overview

User Data

Diagnostic and
Parameter Data

Addressing Peripheral I/Os

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 6-5

Table 6-2 Assignment of the Data Records

Data Description

Diagnostic data If the modules are capable of diagnostics, you
obtain the diagnostic data of the module by reading
data records 0 and 1.

Parameter data If the modules are configurable, you transfer the
parameters to the module by writing data records 0
and 1.

You can use the information in the data records of a module to reassign
parameters to configurable modules and to read diagnostic information from
modules with diagnostic capability.

Table 6-3 shows which system functions you can use to access data records.

Table 6-3 System Functions for Accessing Data Records

SFC Application

Assigning parameters to modules

SFC55 WR_PARM Transfers modifiable parameters (data record 1) to the
addressed signal module.

SFC56
WR_DPARM

Transfers the parameters (data records 0 or 1) from
SDBs 100 to 129 to the addressed signal module.

SFC57
PARM_MOD

Transfers all parameters (data records 0 and 1) from
SDBs 100 to 129 to the addressed signal module.

SFC58 WR_REC Transfers any data record to the addressed signal
module.

Reading out diagnostic information

SFC59 RD_REC Reads the diagnostic data

You can access STEP 5 modules as follows:

� By connecting an S7-400 to SIMATIC S5 expansion racks using the
network adapter IM 463-2

� By plugging in certain S5 modules in an adapter casing in the central rack
of the S7-400

How you address S5 modules with SIMATIC S7 is explained in the manual
/100/ or in the description supplied with the adapter casing.

Accessing Data
Records

Addressing S5
Modules

Addressing Peripheral I/Os

6-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

6.3 Special Features of Distributed Peripheral I/Os (DP)

With SIMATIC S7, you can use the distributed peripheral I/Os (DP).
Distributed I/Os are analog and digital modules installed close to the process
and function modules (FM) installed on the P bus and therefore normally at
some distance from the CPU.

You can attach distributed peripherals to the S7 programmable logic
controller using the SINEC L2-DP bus system and one of the following:

� The integrated DP master interface of a CPU (for example
CPU 315-2-DP, CPU 413-2 DP, CPU 414-2 DP)

� An interface module assigned to a CPU/FM
(for example IF 964-DP in the CPU 388-5, CPU 488-5).

� An external DP master interface (for example CP 443-5, CP 342-5,
IM 467)

Distributed modules are configured in the same way as central modules using
STEP 7 (refer to the STEP 7 user manual /231/).

The address area of the distributed I/Os is the same for DP master and
DP slave modules and corresponds to the peripheral I/O address shown in
Table 6-1.

The DP master module provides a data area for the user data of the
distributed I/Os. The CPU accesses this data area when it addresses the
distributed I/Os.

It is also possible to access user data just as with the central I/Os using load
and transfer commands, communication functions (operator interface) and
process image transfer. The maximum data consistency is 4 bytes.

Just as with the central I/Os, diagnostic and parameter data can be accessed
using SFCs (see Table 6-3) (exception DP standard slaves).

Distributed I/Os

Attachment to S7

Configuration

Addressing the DP
Master and DP
Slaves

Access to User
Data

Access to
Diagnostic and
Parameter Data

Addressing Peripheral I/Os

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 6-7

If you want to exchange data longer than 4 bytes with DP standard slaves,
you must use special SFCs for this data exchange.

Table 6-4 System Functions for DP Standard Slaves

SFC Application

Assigning parameters to modules

SFC15
DPWR_DAT

Transfers any data record to the addressed signal
module

Reading diagnostic information

SFC13
DPNRM_DG

Reads the diagnostic information (asynchronous read
access)

SFC14 DPRD_DAT Reads consistent diagnostic data (length 3 or greater
than 4 bytes)

When a DP diagnostic frame arrives, a diagnostic interrupt with 4 bytes of
diagnostic data is signaled to the CPU. You can read out these 4 bytes with
SFC13 DPNRM_DG. The entire DP diagnostic information can be read with
SFC14 DPRD_DAT by specifying the diagnostic address of the DP standard
slave.

Addressing DP
Standard Slaves

Addressing Peripheral I/Os

6-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Addressing Peripheral I/Os

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 7-1

Data Exchange Between Programmable
Modules

This chapter describes communication possible with the S7-300 and S7-400
programmable controllers.

Global data communication
When data is exchanged using global data communication, two or more
networked CPUs share common data, the global data.

For further information about the topic of global data communication and
configuring connections, refer to the STEP 7 online help and the STEP 7 user
manual /231/.

The communication SFBs for configured connections are described in the
reference manual /235/.

Heterogeneous communication using SIMATIC CPs is described in detail in
the manuals /500/ and /501/. These manuals also describe the corresponding
communication function blocks.

Section Description Page

7.1 Types of Communication 7-2

7.2 Data Exchange Using Communication SFBs for Configured
Connections

7-3

7.3 Configuring a Communication Connection between
Communication Partners

7-5

7.4 Working with Communication SFBs for Configured
Connections

7-7

7.5 Data Exchange with Communication SFCs for
Non-Configured Connections

7-8

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

7

7-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

7.1 Types of Communication

The following types of communication are possible with SIMATIC S7:

� Homogeneous communication is communication between S7 components
that use the S7 protocol.

� Heterogeneous communication is communication between S7
components and S5 components and between S7 components and devices
from other vendors using different protocols (for example TF, FMS).

� Communication with communication SFBs for configured connections

The S7-400 CPUs provide communication SFBs for configured
connections for data exchange between programmable modules.

These include system function blocks (SFBs) with which you can
exchange data between two communication partners on a subnet
controlled by the program (for example CPU, FM, CP).

SFBs are also available for checking and changing the operating modes of
remote devices.

� Communication with communication SFCs for non-configured
connections

The S7-300 and S7-400 CPUs provide communication SFCs for
non-configured connections, to allow data to be exchanged between two
communication partners.

The two communication partners must be attached to the same MPI
subnet or belong to the same S7 station (modules capable of
communication in the central rack, in an expansion rack or in a DP
station).

Overview

S7 Communication

Data Exchange Between Programmable Modules

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 7-3

7.2 Data Exchange with SFBs for Configured Connections

To transfer data between communication partners using communication SFBs
for configured connections, the following conditions must be satisfied:

� The partners must be on one subnet (MPI, PROFIBUS, Industrial
Ethernet).

� You have configured a connection between the partners.

� You call the required system function blocks and corresponding instance
data blocks in the user program.

S7 CPUs provide communication SFBs for configured connections to
exchange data between communication partners (CPU, CP, FM) in a network,
to control a remote device and to monitor or query the internal status of a
local communication SFB.

Table 7-1 SFBs and SFC for Data Exchange

SFB/SFC Brief Description Connection

Send and receive functions

SFB8
SFB9

USEND
URCV

Uncoordinated data exchange using a
send and a receive SFB

bilateral

SFB12
SFB13

BSEND
BRCV

Exchange of blocks of data of
variable length between a send SFB
and a receive SFB

bilateral

SFB14 GET Reads data from a remote device unilateral

SFB15 PUT Writes data to a remote device unilateral

Control functions

SFB19 START Initiates a complete restart on a
remote device

unilateral

SFB20 STOP Sets a remote device to the STOP
mode

unilateral

SFB21 RESUME Initiates a restart on a remote device unilateral

Monitoring functions

SFB22 STATUS Specific query of the status of a
remote device

unilateral

SFB23 USTATUS Receives status messages from
remote devices

bilateral

Query function

SFC62 CONTROL Queries the internal state of a local
communication SFB using its
instance DB.

–

Prior
Requirements

Communication
SFBs for
Configured
Connections

Data Exchange Between Programmable Modules

7-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

The following types of communication are distinguished when exchanging
data with communication SFBs:

� Bilateral communication indicated by the local and remote
communication partners each having one SFB of a pair.

� Unilateral communication indicated by the fact that only the local
communication partner has a communication SFB.

Figures 7-1 and 7-2 illustrate the two types of communication.

USEND URCV

logical connection

Communication partner1 (local) Communication partner2 (remote)

Figure 7-1 Bilateral Communication

PUT

logical connection

Communication partner1 (local) Communication partner2 (remote)

No SFB exists:
Communication
provided by system

Figure 7-2 Unilateral Communication

A sample program for transferring data between communication partners
using communication SFBs for configured connections is supplied with
STEP 7. This sample program is described in Appendix B, the source code is
in the directory step7\examples\com.slb.

Types of
Communication

Pogramming
Example

Data Exchange Between Programmable Modules

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 7-5

7.3 Configuring a Communication Connection Between Partners

Data exchange using communication function blocks is possible between the
following partners:

� S7 CPUs

� M7 CPUs

� S7 CPUs and M7 CPUs

� CPUs and FMs

� CPUs and CPs.

Figure 7-3 and Table 7-2 are examples indicating which communication
partners can exchange data.

PG1

CPU1

S7-400_1 S7-400_2

M7/S7-400_3

S7-300_1

M7/S7-300_3

...... CPU2 FM1 CPU4 FM2

CPU3 FM4 FM5 CPU5 FM3

PROFIBUS/Industrial Ethernet

MPI

K bus Backplane busK bus

Backplane busK bus

......

Non-Siemens
system

CP 1 CP 2 CP 3

Figure 7-3 Communication Partners that Can Exchange Data

Communication
Partners

Data Exchange Between Programmable Modules

7-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table 7-2 Examples of Communication Partners that Can Exchange Data

Data Exchange Possible Between Type of Commu-
nication

CPU 1 ↔ CPU 2 homogeneous

CPU 1 ↔ CPU 3 homogeneous

CPU 2 → CPU 4 (only with
PUT/GET/START/STOP/STATUS)

homogeneous

CPU 3 → CPU 5 (only with
PUT/GET/START/STOP/STATUS)

homogeneous

CPU 1 ↔ system from other vendor heterogeneous

Note

Distributed FMs (on the P bus) cannot currently take part in data exchange
using communication SFBs for configured connections.

To allow data to be exchanged between communication partners, the partners
must be networked (MPI, PROFIBUS, Industrial Ethernet) and there must be
a connection between the partners. In STEP 7, you configure this connection
by creating a connection table and loading it on the corresponding module
with the user program. The table contains the following information:

� The connection IDs for both communication partners

� The remote communication partner

� The type of communication

Just as there is unilateral and bilateral communication, there are also
unilateral and bilateral connections:

� Unilateral connection: there is only one communication SFB on the local
communication partner

� Bilateral connection: there is a pair of blocks on the local and remote
communication partners

You must also specify the type of connection when you create the connection
table. The number of possible connections per configurable module depends
on the CPU.

Each configured connection is identified by a connection ID. This represents
the local reference between the block and the connection. The local and the
remote communication partners of a configured connection can have
different connection IDs. The connection IDs are assigned by STEP 7.

When you call the communication SFBs, you must specify the corresponding
connection ID as the input parameter for each block.

Configuring a
Connection

Unilateral/Bilateral
Connections

Connection ID

Data Exchange Between Programmable Modules

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 7-7

7.4 Working with Communication SFBs for Configured Connections

System function blocks and system functions are part of the operating system
of an S7 CPU. They can be called by the user program and are not loaded as
part of the user program.

Just like function blocks, system function blocks require an instance data
block that contains the actual parameters and local data areas of the SFB.
Instance data blocks must be created with STEP 7 and loaded as part of the
user program.

The logical connection between two communication partners is identified by
their connection IDs.

It is possible to use the same logical connection for different send/receive
jobs. For this reason, you must also specify a job ID R_ID in addition to the
connection ID to indicate that the send and receive blocks belong together.

USEND URCV

logical
connection

Communication partner1 (local) Communication partner2 (remote)

Send block Receive block

R_ID1 R_ID1

USENDURCV

ID

Send blockReceive block

R_ID2

ID
R_ID2

ID

ID

Figure 7-4 Addressing Parameters ID and R_ID

Appendix B contains a sample program illustrating data exchange using
communication SFBs for configured connections.

System Function
Blocks and System
Functions

Instance Data
Blocks

Addressing the
Communication
Partner

Sample Program

Data Exchange Between Programmable Modules

7-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

7.5 Data Exchange with Communication SFCs for Non-Configured
Connections

Using communication SFCs for non-configured connections, you can
exchange data between an S7 CPU and another module that is capable of
communication. The following conditions must be satisfied:

� The communication partner must be attached to the same MPI subnet or
belong to the same S7 station (module capable of communication in the
central rack, in an expansion rack or in a DP station).

� The required SFCs must be called in the user program.

The S7-300 and S7-400 CPUs provide communication SFCs for
non-configured connections to allow data exchange between two
communication partners and to terminate existing connections.

Table 7-3 SFCs for Communication between S7 Stations

Block Description

SFC65 “X_SEND”/

SFC66 “X_RCV”

Data exchange between communication partners using a send
and a receive SFC

SFC67 “X_GET” Reads a variable from a communication partner

SFC68 “X_PUT” Writes a variable to a communication partner

SFC69 “X_ABORT” Aborts an existing connection to a communication partner.
This releases connection resources at both ends of the
connection.

Table 7-4 SFCs for Communication within an S7 Station

Block Description

SFC72 “I_GET” Reads a variable from a communication partner (for example
FM)

SFC73 “I_PUT” Writes a variable to a communication partner (for example
FM)

SFC74 “I_ABORT” Aborts an existing connection to a communication partner.
This releases connection resources at both ends of the
connection.

Requirements

Communication
SFCs for
Non-Configured
Connections

Data Exchange Between Programmable Modules

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 7-9

To allow data to be exchanged between communication partners, the partners
must be networked (K bus or PROFIBUS DP for SFCs I_GET, I_PUT and
I_ABORT, MPI for SFCs X_SEND, X_RCV, X_GET, X_PUT and
X_ABORT). A communication connection is established by the operating
system of the CPU while the SFC is being executed.

You decide whether or not the connection is terminated after the data transfer
using an input parameter (for more detailed information, refer to the
Reference Manual /235/).

If a connection cannot be established at the present time, you must call the
SFC again later.

A connection is established by the CPU on which a communication SFC is
called (exception: the SFC66 “X_RCV” call does not establish a connection).
A maximum of one connection in both directions is possible between two
communication partners.

� If the communication partner is not in the same S7 station:

The logical connection is specified by the MPI address of the
communication partners (parameter DEST_ID). You configured this with
STEP 7.

� If the communication partner is in the same S7 station:

The logical connection is specified by the address area ID (parameter
IOID) and the logical address (parameter LADDR) of the communication
partner.

Connection to
Communication
Partner

Addressing the
Communication
Partner

Data Exchange Between Programmable Modules

7-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Data Exchange Between Programmable Modules

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 8-1

Setting System Parameters

This chapter explains how you can modify certain properties of S7-300 and
S7-400 programmable controllers by setting system parameters or using
system functions (SFCs).

For detailed information about module parameters, refer to the STEP 7
online help and the manuals /70/, /71/ and /101/. The SFCs are described in
detail in the reference manual /235/.

Section Description Page

8.1 Changing the Behavior and Properties of Modules 8-2

8.2 Using the Clock Functions 8-4

8.3 Specifying the Startup Behavior 8-5

8.4 Settings for the Cycle 8-6

8.5 Specifying the MPI Parameters 8-9

8.6 Specifying Retentive Memory Areas 8-10

8.7 Using Clock Memory and Timers 8-11

8.8 Changing the Priority Classes and Amount of Local Data 8-12

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

8

8-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

8.1 Changing the Behavior and Properties of Modules

When supplied, all the configurable modules of the S7 programmable
controller have default settings suitable for standard applications. With these
defaults, you can use the modules immediately without making any settings.
The defaults are explained in the module descriptions /70/, /71/ and /101/.

You can, however, modify the behavior and the characteristics of the modules
to adapt them to your requirements and the situation in your plant.
Configurable modules are CPUs, FMs, CPs and some of the analog
input/output modules and digital input modules.

There are configurable modules with and without backup batteries.

Modules without backup batteries must be supplied with data again following
any power down. The parameters of these modules are stored in the retentive
memory area of the CPU (indirect parameter assignment by the CPU).

You set module parameters using STEP 7. When you save the parameters,
STEP 7 creates the object “System Data Blocks” that is loaded on the CPU
with the user program and transferred to the modules when the CPU starts up.

System data blocks (SDBs) can only be evaluated by the operating system
and cannot be edited with STEP 7.

Not all the existing system data blocks are available on all CPUs (refer to the
CPU descriptions /70/ and /101/). Table 8-1 lists several SDBs that are
available on every CPU and shows which parameters they contain.

Table 8-1 Parameters in SDBs

SDB Parameter Record

0 CPU operating system parameters

1 Peripheral I/O assignment list

2 CPU default parameter record

3 Integrated DP interface

22 Distributed I/O assignment list, internal interface

26 Distributed I/O assignment list, external interface

100 to 103 Parameters for modules in the central configuration of an S7-300

100 to 121 Parameters for modules in the central configuration of an S7-400

122 Parameters for modules in the distributed configuration, internal
interface of an S7-300 and S7-400

126 to 129 Parameters for modules in the distributed configuration, external
interface of an S7-300 and S7-400

1000 to 32767 Parameters for K bus modules

Default Settings

Which Modules
Can You Assign
Parameters to?

Setting and
Loading
Parameters

System Data
Blocks

Setting System Parameters

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 8-3

The module parameters are divided into parameter fields. Which parameter
fields are available on which CPU is explained in the CPU descriptions /70/
and /101/.

Parameter fields exist for the following topics:

� Startup behavior

� Cycle

� MPI

� Diagnostics

� Retentive data

� Clock memory

� Interrupt handling

� On-board I/Os (only for the S7-300)

� Protection level

� Local data

� Real-time clock

� Asynchronous errors

In addition to assigning parameters with STEP 7, you can also include system
functions in the S7 program to modify module parameters. Table 8-2
illustrates which SFCs transfer which module parameters (see also
Section 6.2).

Table 8-2 System Functions for Accessing Data Records

SFC Application

SFC55 WR_PARM Transfers the modifiable parameters (data record 1) to
the addressed signal module

SFC56
WR_DPARM

Transfers parameters (data records 0 or 1) from SDBs
100 to 129 to the addressed signal module

SFC57
PARM_MOD

Transfers all parameters (data records 0 and 1) from
SDBs 100 to 129 to the addressed signal module

SFC58 WR_REC Transfers any data record to the addressed signal
module

The system functions are described in detail in the reference manual /235/.

Which module parameters can be modified dynamically is explained in the
manuals /70/, /71/ or /101/.

Which Settings
can be Made?

Parameter
Assignment with
SFCs

Setting System Parameters

8-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

8.2 Using the Clock Functions

All S7-300-/S7-400 CPUs are equipped with a clock (real-time clock or
software clock). The clock can be used in the programmable controller both
as clock master or clock slave with external synchronization. The clock is
required for time-of-day interrupts and run-time meters.

The clock always indicates the time (minimum resolution 1 s), date and
weekday. With some CPUs, it is also possible to indicate milliseconds (refer
to the CPU descriptions /70/ and /101/).

You set the time and date for the CPU clock by calling SFC 0 SET_CLK in
the user program or with a menu option on the programming device to start
the clock. Using SFC1 READ_CLK or a menu option on the programming
device, you can read the current date and time on the CPU.

If more than one module equipped with a clock exists in a network, you must
set parameters using STEP 7 to specify which CPU functions as master and
which as slave when the time is synchronized. When setting these
parameters, you also decide whether the time is synchronized via the K bus
or via the MPI interface and the intervals at which the time is automatically
synchronized.

To make sure that the time is the same on all modules in the network, the
slave clocks are synchronized by the system program at regular (selectable)
intervals. You can transfer the date and time from the master clock to the
slave clocks using system function SFC48 SFC_RTCB.

A run-time meter counts the run-time hours of connected equipment or the
total run-time hours of the CPU.

In the STOP mode, the run-time meter is stopped. Its count value is retained
even after a memory reset. During a complete restart, the run-time meter
must be restarted by the user program; following a restart, it continues
automatically if it had already been started.

You can set the run-time meter to an initial value using SFC2 SET_RTM.
You can start or stop the run-time meter with SFC3 CTRL_RTM. You can
read the current total operating hours and the state of the counter (”stopped”
or “counting”) with SFC4 READ_RTM.

A CPU can have up to eight run-time meters (refer to the CPU descriptions
/70/ and /101/). Numbering starts at 0.

Overview

Time Format

Setting and
Reading the Time

Assigning
Parameters for the
Clock

Synchronizing the
Time

Using a Run-Time
Meter

Setting System Parameters

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 8-5

8.3 Specifying the Startup Behavior

The startup behavior of S7 CPUs is described in Chapter 9. When you select
parameters to determine the startup behavior, remember that only S7-400
CPUs are capable of a restart.

A manual complete restart is the only option on S7-300 CPUs.

On S7-400 CPUs, you can restart manually using the mode selector and the
startup type switch (CRST/WRST) if this is permitted by the parameter
assignment you made with STEP 7. A manual complete restart is possible
without specifically assigning parameters.

On S7-300 CPUs, only a COMPLETE RESTART is possible following
power up.

With S7-400 CPUs, you can specify whether an automatic startup following
power up leads to a COMPLETE RESTART or a RESTART.

When an S7-400 CPU is restarted, the remaining cycle is executed, and as
default, the process image output table is cleared. You can prevent the
process image being cleared if you want the user program to continue with
the old values following a restart (see also Figure 9-2).

On S7-300 CPUs, you can set parameters to specify whether the CPU tests its
internal RAM during a complete restart.

In the parameters, you can decide whether the modules in the configuration
table are checked to make sure they exist and that the module type matches
before the startup.

If the module check is activated, the CPU will not start up if a discrepancy is
found between the configuration table and the actual configuration.

To make sure that the programmable controller starts up without errors, you
can select the following monitoring times:

� The maximum permitted time for transferring parameters to the modules

� The maximum permitted time for the modules to signal that they are
ready for operation after power up

� On S7-400 CPUs, the maximum time of an interruption following which a
restart is permitted.

Once the monitoring times expire, the CPU either changes to STOP and only
a complete restart is possible.

Introduction

Startup After
Manual Start

Startup After
Automatic Start

Clearing the
Process Image

Self-Test During a
Complete Restart

Module
Exists/Type
Monitoring

Monitoring Times

Setting System Parameters

8-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

8.4 Settings for the Cycle

The cycle time is the time required by the CPU to execute the cyclic program
and all the program sections resulting from interrupts during the cycle (for
example servicing hardware interrupts) and the time required for system
activities. This time is monitored.

With STEP 7, you can modify the default maximum cycle time. If this time
expires, the CPU either changes to the STOP mode or OB80 is called in
which you can specify how the CPU should react to this error.

On S7-400 CPUs, you can set a minimum cycle time using STEP 7. This is
useful in the following situations:

� When the interval at which program execution starts in OB1 (main
program scan) should always be the same or

� When the process image tables would be updated unnecessarily often if
the cycle time is too short.

Figure 8-1 illustrates the cycle monitoring time during program startup.

Tmax is the selectable maximum cycle time
Tmin is the selectable minimum cycle time
Tc is the actual cycle time
Twait is the difference between Tmin and the actual cycle time.

During this time, interrupt OBs can be serviced.
PC stands for priority class

Current cycle Next cycle

OB10 OB10

OB40

PC07

PC01

Tc

Tmin

Tmax

Twait

PC16

OB1 OB1
Update process

image input
table

Update process
image output

table

Update process
image input

table
OB1

Reserve

Figure 8-1 Cycle Monitoring Time

Cycle Time

Maximum Cycle
Time

Minimum Cycle
Time

Setting System Parameters

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 8-7

During cyclic program execution by the CPU, the process image is updated
automatically. On S7-400 CPUs, you can prevent updating of the process
image in one of the two following situations:

� If you want to access the I/Os directly or

� You want to update one or more process image input or output sections at
a different point in the program using system functions SFC26 UPDAT_PI
and SFC27 UPDAT_PO.

To prevent communication functions extending the time required for program
execution too much, you can specify the maximum amount by which the
cycle can be extended by communication.

When you decide on the load added to the cycle by communication,
remember that the operating system execution time further extends the run
time. If you set a communication load of 50%, this does not double the
original run time but more than doubles it, the further increase depending on
the CPU being used. This is illustrated by an example based on a worst case
situation.

Situation:

� The operating system execution time is 250 ms per second cycle time.

� The user program has a run time of 750 ms

� The load on the cycle caused by communication is 0%.

A cycle can be represented in simplified form as follows:

0 1 2 3

Total cycle time = 1000 ms

Opsy = run time load caused by operating system
Upr = run time load caused by user program

Opsy
250 ms

Upr
750 ms

Opsy
250 ms

Upr
750 ms

Opsy
250 ms

Upr
750 ms

t
s

The cycle load due to communication is now set to 50%:

� The operating system execution time continues to be 250 ms per second
cycle time

� The user program continues to run for 750 ms

� The run time load caused by communication is 1500 ms per cycle

Updating the
Process Image

Communication
Load

Setting System Parameters

8-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

The time sequence is then as follows:

0 1 2 3

Total cycle time = 3000 ms
Communication = 1500 ms

Opsy = run time load caused by operating system

Upr = run time load caused by user program

Opsy
250 ms

Upr
250 ms

Opsy
250 ms

Upr
250 ms

Opsy
250 ms

Upr
250 ms

t
s

Comm = run time load caused by communication

Comm
500 ms

Comm
500 ms

Comm
500 ms

In this example, setting the communication load to 50% extends the cycle
time from 1 second to 3 seconds, in other words, the total cycle time is
tripled.

Setting System Parameters

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 8-9

8.5 Specifying the MPI Parameters

Up to 32 devices that communicate with each other can be connected to the
multipoint interface (MPI) of a CPU. The following devices can be
connected:

� Programmable controllers

� Programming devices

� Operator interface systems.

To ensure that a CPU can still communicate after a memory reset, the MPI
parameters are stored in a retentive memory area of the CPU and are retained
after a memory reset, after removing/inserting the module, and if a battery is
defective or is not being used.

With STEP 7, you set the following parameters:

� The node address of the CPU

� The extent of the MPI network (highest node address in the MPI network,
default 16).

Multipoint
Interface

Values after
Memory Reset

Setting the
Parameters

Setting System Parameters

8-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

8.6 Specifying Retentive Memory Areas

To prevent data being lost during a complete restart (and on the S7-300 CPUs
following a power outage), you can declare certain data areas as retentive.

For a detailed description of retentive memory areas on the S7-300 and
S7-400 CPUs, refer to Chapter 5.

By setting parameters with STEP 7, you select the limits of the retentive
memory areas, as follows:

� For the S7-300, retentive areas for memory bits, timers, counters, and
areas in data blocks

� For S7-400-CPUs, the retentive areas for memory bits, timers, and
counters.

Uses

Setting the
Parameters

Setting System Parameters

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 8-11

8.7 Using Clock Memory and Timers

The clock memory is a memory byte that changes its binary state periodically
at a pulse-pause ratio of 1:1. You select which memory byte is used on the
CPU when you assign parameters for the clock memory using STEP 7.

You can use clock memory bytes in the user program, for example to activate
flashing lights or to trigger periodic activities (for example measuring an
actual value).

Each bit of the clock memory byte is assigned a frequency. Table 8-3
illustrates the assignment:

Table 8-3 Possible Frequencies of a Clock Memory Byte

Bit 7 6 5 4 3 2 1 0

Period (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1

Frequency (Hz) 0.5 0.625 1 1.25 2 2.5 5 10

Note

Clock memory bytes are not synchronous with the CPU cycle, in other words
in long cycles, the state of the clock memory byte may change several times.

Timers are a memory area of the system memory. You specify the function of
a timer in the user program (for example on-delay timer).

The number of timers available depends on the CPU (see /70/ and /101/). If
you use less timers in the user program than are actually available, you can
set the parameters so that only this number of timers is updated in the
STARTUP and RUN modes. This optimizes the operating system run time.

Note

If you use more timers in your user program than the CPU permits, a
synchronous error is signaled and OB121 started.

If you use more timers in your user program than you have selected in the
parameter settings, no error is signaled, however the timers do not run. You
can use the STEP 7 debugging functions to check whether or not a timer is
running.

On the S7-300, timers can be started and updated simultaneously only in
OB 1 and OB100. Timers can only be started in all the other OBs.

Clock Memory

Uses

Possible
Frequencies

Timers

Setting System Parameters

8-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

8.8 Changing the Priority Classes and Amount of Local Data

On S7-400 CPUs, you can set parameters to change the priority of some of
the interrupt OBs. This means that you can decide which interrupt OBs can
be interrupted by higher priority interrupt OBs.

You cannot change the priority classes of the following OBs:

� Main program scan OB1

� Background OB90

� Startup types OB100 and OB101

� Multicomputing OB60

� Asynchronous errors OB80 to 87

� Error OBs started by synchronous errors. They are executed in the same
priority class as the block being executed when the error occurred.

You can change the default priority of the interrupt OBs (providing such a
change is permitted) by changing the parameters in the parameter fields:
time-of-day interrupts, time-delay interrupts, cyclic interrupts, and hardware
interrupts (see also Section 3.1).

When creating logic blocks (OBs, FCs, FBs), you can declare temporary
local data. The local data area on the CPU is divided among the priority
classes.

On S7-400 CPUs, you can change the amount of local data per priority class
in the “priority classes” parameter field using STEP 7. Each OB must have at
least 20 local data bytes that are required to transfer the OB start information.

If you assign priority class 0 or assign less than 20 bytes of local data to a
priority class, the corresponding interrupt OB is deselected. The handling of
deselected interrupt OBs is restricted as follows:

� In the RUN mode, they cannot be copied or linked in your user program.

� In the STOP mode, they can be copied or linked in your user program, but
when the CPU goes through a complete restart they stop the startup and
an entry is made in the diagnostic buffer.

By deselecting interrupt OBs that you do not require, you increase the
amount of local data area available, and this can be used to save temporary
data in other priority classes.

Introduction

Fixed Priority
Classes

Changing the
Priority

Local Data

Changing the
Amount of Local
Data

Deselected
Interrupt OBs

Uses

Setting System Parameters

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-1

Operating Modes and Mode Changes

This chapter provides you with an overview of the operating modes of the S7
CPUs and describes the different types of startup on S7 CPUs.

This chapter also explains how the operating system supports you when
debugging your user program.

Section Description Page

9.1 Operating Modes and Mode Changes 9-2

9.2 STOP Mode 9-5

9.3 STARTUP Mode 9-6

9.4 RUN Mode 9-12

9.5 HOLD Mode 9-13

9.6 Testing the User Program 9-14

What Does This
Chapter Describe?

Overview of the
Chapter

9

9-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

9.1 Operating Modes and Mode Changes

Operating modes describe the behavior of the CPU at any particular point in
time. Knowing the operating modes of CPUs is useful when programming
the startup, debugging the control program, and for troubleshooting.
Figure 9-1 shows the operating modes of the S7-300 and S7-400 CPUs:
STOP, START UP, RUN and HOLD.

STARTUP
STOP RUN1

2

3

7

8

HOLD

45

6

910

Figure 9-1 How the Operating Modes Change

In the STOP mode, the CPU checks whether all the configured modules or
modules set by the default addressing actually exists and sets the I/Os to a
predefined initial status. The user program is not executed in the STOP
mode.

In the STARTUP mode, a distinction is made between the startup types
“Complete Restart” and “Restart”:

� In a complete restart, the program starts at the beginning with initial
settings for the system data and user address areas (the non-retentive
timers, counters and bit memory are reset).

� In a restart, the program is resumed at the point at which it was
interrupted (timers, counters and bit memory are not reset). A restart is
only possible on S7-400 CPUs.

In the RUN mode, the CPU executes the user program, updates the inputs
and outputs, services interrupts and process error messages.

In the HOLD mode, execution of the user program is halted and you can test
the user program step by step. The HOLD mode is only possible when you
are testing using the programming device.

In all these modes, the CPU can communicate on the MPI interface.

Operating Modes

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-3

If the CPU is not ready for operation, it is in one of the following modes:

� Off, in other words, the power supply is turned off.

� Defective, in other words, a fault has occurred.
To check whether the CPU is really defective, switch the CPU to STOP
and turn the power switch off and then on again. If the CPU starts up,
read out the diagnostic buffer to analyze the problem. If the CPU does not
start up it must be replaced.

Table 9-1 shows the conditions under which the operating modes can change.

Table 9-1 Changing the Modes of the CPU (Explanation of Figure 9-1)

Point Description

1. After you turn on the power supply, the CPU is in the STOP mode.

2. The CPU changes to the STARTUP mode:
� After the CPU is changed to RUN or RUN-P using the keyswitch

or by the programming device.
� After a startup triggered automatically by turning on the power.
In both cases the keyswitch must be set to RUN or RUN-P.

3. The CPU changes back to the STOP mode when:
� An error is detected during the startup.
� The CPU is changed to STOP by the keyswitch or on the

programming device.
� A stop command is executed in the startup OB.
� The STOP communication function is executed.

4. The CPU changes to the HOLD mode when a breakpoint is reached in
the startup program.

5. The CPU changes to the STARTUP mode when the breakpoint in a
startup program was set and the “EXIT HOLD” command was
executed (test functions).

6. The CPU returns to the STOP mode when:
� The CPU is changed to STOP with the keyswitch or by the

programming device.
� The STOP communication command is executed.

7. If the startup is successful, the CPU changes to RUN.

8. The CPU changes to the STOP mode again when:
� An error is detected in the RUN mode and the corresponding OB

is not loaded.
� The CPU is changed to STOP with the keyswitch or by the

programming device.
� A stop command is executed in the user program.
� The STOP communication function is executed.

9. The CPU changes to the HOLD mode when a breakpoint is reached in
the user program.

10. The CPU changes to the RUN mode when a breakpoint was set and
the “EXIT HOLD” command is executed.

Other Operating
Modes

Operating Mode
Changes

Operating Modes and Mode Changes

9-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

If more than one mode change is requested at the same time, the CPU
changes to the mode with the highest priority. If, for example, the mode
selector is set to RUN and you attempt to set the CPU to STOP at the
programming device, the CPU will change to STOP because this mode has
the highest priority.

Priority Mode

Highest STOP

HOLD

START UP

Lowest RUN

Priority of the
Operating Modes

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-5

9.2 STOP Mode

When the CPU is in the STOP mode, the user program is not executed. All
the outputs are set to substitute values so that the controlled process is in a
safe status. The CPU makes the following checks:

� Are there any hardware problems (for example modules not available)?

� Should the default setting apply to the CPU or are there parameter
records?

� Are the conditions for the programmed startup behavior satisfied?

� Are there any system software problems?

In the STOP mode, the CPU can also receive global data and passive
unilateral communication is possible using communication SFBs for
configured connections and communication SFCs for non-configured
connections (see also Table 9-5).

The CPU memory can be reset in the STOP mode. The memory can be reset
manually using the keyswitch (MRES) or from the programming device (for
example before downloading a user program.

Resetting the CPU memory returns the CPU to its initial status, as follows:

� The entire user program in the work memory and in the RAM load
memory and all address areas are cleared.

� The system parameters and the CPU and module parameters are reset to
the default settings. The MPI parameters set prior to the memory reset are
retained.

� If a memory card (Flash-EPROM) is plugged in, the CPU copies the user
program from the memory card to the work memory (including the CPU
and module parameters if the appropriate configuration data are also on
the memory card).

The diagnostic buffer, the MPI parameters, the time and the run-time meters
are not reset.

Features

Memory Reset

Operating Modes and Mode Changes

9-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

9.3 STARTUP Mode

Before the CPU can start executing the user program, a startup program must
first be executed. By programming startup OBs in your startup program, you
can specify certain settings for your cyclic program.

There are two types of startup: complete restart and restart (S7-300 CPUs are
only capable of a complete restart). A restart is only possible when this is
explicitly specified in the parameter record of the CPU using STEP 7.
The features of the STARTUP mode are as follows:

� The program in the startup OB is processed (OB100 for a complete restart
and OB101 for a restart)

� No time or interrupt-driven program execution is possible.

� Timers are updated.

� Run-time meters start running.

� Disabled digital outputs on signal modules (can be set by direct access).

A complete restart is always permitted unless the system has requested a
memory reset. A complete restart is the only possible option after:

� Memory reset

� Downloading the user program with the CPU in the STOP mode

� I stack/B stack overflow

� Complete restart aborted (due to a power outage or changing the mode
selector setting)

� When the interruption before a restart exceeds the selected time limit.

A manual complete restart can be triggered by the following:

� The mode selector

The CRST/WRST switch must be set to CRST.

� The corresponding menu on the programming device or by
communication functions (mode selector set to RUN or RUN-P).

An automatic complete restart can be triggered following power up in the
following situations:

� The CPU was not in the STOP mode when the power outage occurred.

� The mode selector is set to RUN or RUN-P.

� No automatic restart is programmed following power up.

� The CPU was interrupted by a power outage during a complete restart
(regardless of the programmed type of restart).

The CRST/WRST switch has no effect on an automatic complete restart.

Features

Complete Restart

Manual Complete
Restart

Automatic
Complete Restart

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-7

If you operate your CPU without a backup battery (if maintenance-free
operation is necessary), the CPU memory is automatically reset and a
complete restart executed after the power is turned on or when power returns
following a power outage. The user program must be located on a flash
EPROM (memory card).

Following a power outage in the RUN mode followed by a return of power,
S7-400 CPUs run through an initialization routine and then automatically
execute a restart. During a restart, the user program is resumed at the point at
which its execution was interrupted. The section of user program that had not
been executed before the power outage, is known as the remaining cycle (see
also Figure 9-2). The remaining cycle can also contain time and
interrupt-driven program sections.

A restart is only permitted when the user program was not modified in the
STOP mode (for example by reloading a modified block) and when there are
no other reasons for a complete restart (refer to complete restart). Both a
manual and automatic restart are possible.

A manual restart is only possible with the appropriate parameter settings in
the parameter record of the CPU and when the STOP resulted from the
following causes:

� The mode selector was changed from RUN to STOP.

� The STOP mode was the result of a command from the programming
device.

A manual restart can be triggered as follows:

� Using the mode selector.

The CRST/WRST must be set to WRST.

� Using the menu option on the programming device or by communication
functions (when the mode selector is set to RUN or RUN-P).

� When a manual restart following power down is set in the parameter
record of the CPU.

An automatic restart can be triggered by a power up in the following
situations:

� The CPU was not in the STOP mode when the power outage occurred.

� The mode selector is set to RUN or RUN-P.

� Automatic restart following power up is set in the parameter record of the
CPU.

The CRST/WRST switch has no effect on an automatic restart.

Automatic
Complete Restart
Without a Backup
battery

Restart

Manual Restart

Automatic Restart

Operating Modes and Mode Changes

9-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

S7-300 and S7-400 CPUs react differently to power up following a power
outage.

S7-300 CPUs are only capable of a complete restart. With STEP 7, you can,
however, specify memory bits, timers, counters and areas in data blocks as
retentive to avoid data loss caused by a power outage. When the power
returns, an “automatic complete restart with memory” is executed.

S7-400 CPUs react to the return of power by executing either a complete
restart or a restart (depending on the parameter settings).

Tables 9-2 and 9-3 show the data that are retained on S7-300 and S7-400
CPUs during a complete restart or a restart.

X means data retained

0 means data reset or cleared (contents of
DBs)

I means data set to the initialization value
taken from the EPROM.

Table 9-2 Data Retention in the EPROM Load Memory

EPROM (memory card or integrated)

CPU with backup battery CPU without backup battery

Data Logic
blocks

DB Memory bits, timers,
counters

Logic
blocks

DB Memory bits, timers,
counters

defined as
retentive

defined as
non-
retentive

defined as
retentive

defined as
non-
retentive

defined as
retentive

defined as
non-
retentive

Complete
restart on
S7-300

X X X 0 X X I X 0

Complete
restart on
S7-400

X X X 0 I I 0

Restart on
S7-400

X X X Only complete restart permitted

Retentive Data
Areas Following
Power Down

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-9

Table 9-3 Data Retention in the RAM Load Memory

RAM (memory card or integrated)

CPU with backup battery CPU without backup battery

Data Logic
blocks

DB Memory bits, timers,
counters

Logic
blocks

DB Memory bits, timers,
counters

Complete
restart on
S7-300

X X X
defined as
retentive

0
defined as
non-
retentive

0 0 0

Complete
restart on
S7-400

X X X 0 0 0 0

Restart on
S7-400

X X X Only complete restart permitted

The activities performed by the CPU during startup are illustrated by
Table 9-4:

X means is performed

0 means is not performed

Table 9-4 Startup Activities

Activities in Order of Execution In Complete
Restart

In Restart

Clear I stack/B stack X 0

Clear non-retentive memory bits, timers, countersX 0

Clear process image output table X selectable

Clear outputs of digital signal modules X selectable

Discard hardware interrupts X 0

Discard diagnostic interrupts X X

Update the system status list (SZL) X X

Evaluate module parameters and transfer to
modules or transfer default values

X X

Execution of the relevant startup OB X X

Execute remaining cycle (part of the user program
not executed due to the power down)

0 X

Update the process image input table X X

Enable digital outputs (cancel OD signal) X X

Startup Activities

Operating Modes and Mode Changes

9-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

If an error occurs during startup, the startup is aborted and the CPU changes
to or remains in the STOP mode.

An aborted complete restart must be repeated. After an aborted restart, both a
complete restart and a restart are possible.

No startup (complete restart or restart) is executed or it is aborted in the
following situations:

� The keyswitch of the CPU is set to STOP.

� A memory reset is requested.

� A memory card with an application identifier that is not permitted for
STEP 7 is plugged in (for example STEP 5).

� More than one CPU is plugged in in the single-processor mode.

� If the user program contains an OB that the CPU does not recognize or
that has been disabled.

� When, after power up, the CPU recognizes that not all the modules listed
in the configuration table created with STEP 7 are actually plugged in.

� If errors occur when evaluating the module parameters.

A restart is not executed or is aborted in the following situations:

� The CPU memory was reset (only a complete restart is possible after
memory reset).

� The interruption time limit has been exceeded (this is the time between
exiting the RUN mode until the startup OB including the remaining cycle
has been executed).

� The module configuration has been changed (for example module
replaced).

� The parameter assignment only permits a complete restart.

� When blocks have been loaded, deleted or modified while the CPU was
in the STOP mode.

Aborting a Startup

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-11

Figure 9-2 shows the activities of the CPU during STARTUP and RUN.

RUNSTARTUPSTOP

Complete restart
request

Restart request

STOP

Clear PI
input/output

table, peripheral
I/Os, and

non-retentive
memory bits,
timers, and
counters.

Complete
restart OB

Enable the
outputs

Restart OB

Remaining cycle

Delete process image
output table and

peripheral outputs
(selectable)

Interruption time
limit exceeded?

Read process
image input table

Execute user
program

Output process
image output table

no

yes

Output process
image output table

Figure 9-2 CPU Activities in START UP and RUN

Sequence of
Activities

Operating Modes and Mode Changes

9-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

9.4 RUN Mode

In the RUN mode, the CPU executes the cyclic, time-driven and
interrupt-driven program, as follows:

� The process image of the inputs is read in.

� The user program is executed.

� The process image output table is output.

The active exchange of data between CPUs using global data communication
(global data table) and using communication SFBs for configured
connections and communication SFCs for non-configured connections is only
possible in the RUN mode.

Table 9-5 shows examples of when data exchange is possible in different
operating modes:

↔ means data exchange is possible in both directions

→ means data exchange is possible in only one direction

X means data exchange is not possible

Table 9-5 Data Exchange in Different Operating Modes

Type of
Communication

Mode of CPU 1 Direction of
Data Exchange

Mode of CPU 2

Global data
i ti

RUN ↔ RUN
communication RUN → STOP/HOLD

STOP ← RUN

STOP X STOP

HOLD X STOP/HOLD

Unilateral with
communication

RUN → RUN
communication
SFBs RUN → STOP/HOLD

Bilateral with
communication

RUN ↔ RUN
communication
SFBs

Unilateral with
communication

RUN → RUN
communication
SFCs RUN → STOP/HOLD

Bilateral with
communication
SFCs

RUN ↔ RUN

Features

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 9-13

9.5 HOLD Mode

The HOLD mode is a special mode. This is only used for test purposes
during startup or in the RUN mode. The HOLD mode means the following:

� All timers are frozen: timers and run-time meters are not processed,
monitoring times are stopped, the basic clock pulses of the time-driven
levels are stopped.

� The real-time clock runs.

� Outputs are not enabled but can be enabled explicitly for test purposes.

� Inputs and outputs can be set and reset.

� If a power outage occurs on a CPU with a backup battery while in the
HOLD mode, the CPU changes to stop when the power returns but does
not execute an automatic restart or complete restart. CPUs without battery
backup execute an automatic complete restart when power returns.

� Global data can be received and passive unilateral communication using
communication SFBs for configured connections and communication
SFCs for non-configured connections is possible (see also Table 9-5).

Features

Operating Modes and Mode Changes

9-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

9.6 Testing the User Program

The operating system supports you when testing and debugging the user
program as follows:

� It provides information about the program.

� It allows you to monitor and modify variables in your user program.

Table 9-6 shows the various options available for testing your program in
STEP 7. For more detailed information about testing and debugging user
programs, refer to the manuals for the programming languages /232/, /233/
and /250/ through /254/ and the STEP 7 user manual /231/.

Table 9-6 Testing the User Program

Test Function Description

Display program status Displays the program status for each statement (for
example result of logic operation RLO, status bit, content
of the registers and accumulators).

Set trigger points,
monitor and control
variables

Allows you to display and modify variables (addresses) at
certain points in the program.

Display diagnostic buffer Allows you to evaluate errors and reasons for changing to
the STOP mode.

Display stack contents Allows you to evaluate the contents of the B stack, I stack
and L stack.

Display cycle times Allows you to check the selected minimum cycle time, the
maximum and current cycle time.

Display operating mode Allows you to display the current operating mode of the
CPU

Introduction

Test Functions

Operating Modes and Mode Changes

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 10-1

Multicomputing

This chapter describes the following:

� What multicomputing means

� How interrupt servicing functions

� Points to remember when configuring the system

� How to configure modules for the multicomputing mode

� Points to remember when programming

� How the CPUs are synchronized

� What errors can occur in the multicomputing mode

Section Description Page

10.1 Overview 10-2

10.2 Configuring Modules 10-4

10.3 Programming the CPUs 10-6

10.4 Synchronizing the CPUs 10-8

10.5 Dealing with Errors 10-10

What Does This
Chapter Describe?

Chapter Overview

10

10-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

10.1 Overview

The multicomputing mode of the S7-400 means simultaneous operation of
more than one CPU (up to a maximum of four) in one central rack. This
mode allows you to distribute the user program and run it synchronized on
several CPUs. In the multicomputing mode:

� The CPUs change their operating modes automatically and mode changes
are synchronized with each other.

� The individual CPUs can access the modules assigned to them during
configuration with STEP 7.

� All the events occurring on one CPU are passed on to the other CPUs as
programmed.

Note

Simultaneous unsynchronized operation of more than one CPU in a
segmented rack (physically segmented, cannot be set by user) is also
possible. This is, however, not multicomputing. The CPUs in a segmented
rack form their own subsystem and behave like single processors. There is
no shared address area.

The “multicomputing mode” and “unsynchronized operation in a segmented
rack” at the same time is not possible.

Multicomputing has advantages in the following situations:

� When your user program is too large for one CPU and memory is used up,
distribute your program on more than one CPU.

� If part of your system must be processed quickly, take these program
sections out of the main program and run them on a separate fast CPU.

� If your system consists of various parts that can be clearly delineated and
can be controlled relatively autonomously, run the program for system
section 1 on CPU 1 and system section 2 on CPU 2 etc.

Introduction

When to Use
Multicomputing

Multicomputing

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 10-3

The following features characterize multicomputing:

� You can operate up to four CPUs at the same time in the central rack.

� You can plug the CPUs into the rack in any order.

� Each individual CPU has its own interrupt line.

� All CPUs are in the same operating mode.

� When the CPUs exit the STOP mode, the startup types are compared
(COMPLETE RESTART / RESTART). This prevents one or more CPUs
going through a COMPLETE RESTART while others go through a
RESTART.

� The CPUs are interconnected via the K bus (corresponds to a connection
via MPI).

Figure 10-1 shows a programmable controller that will operate in the
multicomputing mode. Each CPU can access the modules assigned to it (FM,
CP, SM).

P
S

C
P
U
1

C
P
U
3

C
P
U
4

C
P
U
2

I
M
1

I
M
2

I
M
3

I/O CP,FM
 I/O

I
M

I
M

I/O I
M

I/O CP,FM
 I/O

I
M

I
M

I/O I
M

I/O CP,FM
 I/O

I
M

I
M

I/O I
M

I/O CP,FM
 I/O

I
M

I
M

I/O I
M

CP,FM
 I/O

I
M

FM, I/O I
M

CR

ER

C
h
a
i
n

CP,FM
 I/O

I
M

CP,FM
 I/O

I
M

Figure 10-1 Example of Multicomputing

Special Features

Example

Multicomputing

10-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

10.2 Configuring Modules

Before you can configure modules in your programmable controller for the
multicomputing mode, the following condition must be satisfied:

� You have configured your programmable controller as described in the
manual /100/.

To operate CPUs in the multicomputing mode, remember the following
points when configuring the programmable controller:

� Plug in the CPUs that you want to operate in the multicomputing mode.

� When you then assign parameters to the modules with STEP 7, you must
assign the modules to specific CPUs. This automatically assigns
interrupts.

� Parameter assignment for all CPUs must be completed when the
configuration is downloaded to the programmable controller.

The configuration procedures are described in the manual /231/.

In the multicomputing mode, each CPU is assigned an interrupt input.
Interrupts received at this input cannot be received by the other CPUs. The
assignment of a module to a particular CPU must be made in STEP 7. The
assignment of the interrupt line is made automatically during parameter
assignment.

Figure 10-2 illustrates this assignment.

CPU 3
CPU 4

CPU 2
CPU 1

Interrupt line 4
Interrupt line 3

Interrupt line 2
Interrupt line 1

Mod 1 Mod 2 Mod 3 Mod 4 Mod 5

x

not possible

Figure 10-2 Interrupt Assignment in the Multicomputing Mode

Requirements

Configuring with
STEP 7

Interrupt
Assignment

Multicomputing

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 10-5

The following rules apply to interrupt servicing:

� Hardware interrupts and diagnostic interrupts are sent to only one CPU.

� If there is a module failure, the interrupt is services by the CPU to which
the module was assigned with STEP 7.

� If a rack fails, OB86 is called on every CPU.

Interrupts can be passed on to other CPUs using SFC35 ”MP_ALM” (see
Section 10.3).

Servicing
Interrupts

Multicomputing

10-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

10.3 Programming the CPUs

Programming for the multicomputing mode is essentially the same as
programming a single CPU.

Extra steps are, however, necessary if you want to synchronize the CPUs so
that they react to events together.

If you want all the CPUs to react to events (for example interrupts) together
in the multicomputing mode, you program an SFC35 “MP_ALM” call.
Calling SFC35 triggers a multicomputing interrupt that causes a
synchronized request for OB60 on all CPUs. This OB contains local variables
that specify the triggering event in greater detail.

When SFC35 is called, the information about the events is transferred to all
CPUs in a job identifier. The job identifier allows 16 different events to be
distinguished.

When they service the multicomputing interrupt, both the sending user
program and the user programs on the other CPUs check whether or not they
recognize the job and then react as programmed.

You can call SFC35 at any point in your program. Since the call is only of
practical use in the RUN mode, the multicomputing interrupt is suppressed if
it is triggered in the STARTUP mode.

The multicomputing interrupt can only be can only be triggered again after
the current multicomputing interrupt has been serviced (acknowledged).

The manual /235/ contains a detailed description of SFC35 and the structure
of OB60.

Programming

Calling
SFC35

Multicomputing

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 10-7

The following example illustrates the use of SFC35.

� You have a programmable controller (S7-400) with four CPUs.

� If there is a hardware interrupt on CPU 1, you want the other three CPUs
to react as well.

Step Explanation Call/Parameters

1. On CPU 1, program an SFC35 call in
the hardware interrupt OB (OB40).

CALL SFC35

2. Supply the call with a job identifier
that informs the other user programs
how they should react to the event.

JOB :=JOB

3. Check whether an SFC35 is currently
active using the RETVAL parameter.

RET_VAL :=RETVAL
#RETVAL

4. SFC35 causes the synchronized start of
OB60 on all CPUs. In OB60, the job
identifier sent by CPU 1 is evaluated
and the CPU programs react
accordingly.

The job identifier is in
the local data
OB60_JOB

You can program a specific OB60 for each separate CPU and load it on the
CPU. This means that the execution times can differ from CPU to CPU. This
leads to the following behavior:

� The interrupted priority classes on the CPUs are continued at different
times.

� A multicomputing interrupt is not serviced if it occurs during the
execution of OB60 on any of the CPUs. A message is, however, generated
and you can check this and react accordingly (see example step 3
RETVAL).

If OB60 is not loaded on one of the CPUs, this CPU returns immediately to
the last priority class and continues the program there.

Example

Programming
OB60

Multicomputing

10-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

10.4 Synchronizing the CPUs

In the multicomputing mode, the involved CPUs are synchronized
automatically, in other words, the individual CPUs are forced to adopt the
same operating mode. If, for example, one CPU changes to the STOP mode,
all the CPUs are set to STOP. This synchronization in the multicomputing
mode makes use of two synchronization points:

� Message points (MP).

� Wait points (WP).

Message points ensure that the CPUs change to STOP as soon as possible. At
a message point, one CPU signals a particular event to the other CPUs. The
message has high priority and causes all the other CPUs to interrupt the user
programs at the next command boundary.

Wait points ensure that the user programs on all CPUs are started together
and that an operating mode change only takes place when all synchronized
CPUs are ready to change.

Wait points guarantee simultaneous activities. If, for example, one CPU
cannot change mode immediately, the mode change is delayed on the other
CPUs until the last CPU is ready.

There are several synchronization points at the mode transitions. Figure 10-3
shows these synchronization points and their functions are explained in
Table 10-1.

Overview

Message Points
(MP)

Wait Points (WP)

Synchronization
Points of a CPU

Multicomputing

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 10-9

STOP

RUN

User
programComplete

restart OB

Restart
OB

System
program

WP
 1

WP
 2

WP
 4

MP
 1

MP
 2

HOLDMP
 5

WP
 3

HOLDMP
 6

WP
 5

MP
 3

MP
 4

STARTUP

 Rem. cycle
 of restart

Power up

Figure 10-3 Synchronization Points of an S7-400 CPU

Table 10-1 Explanation of the Synchronization Points

Synchronization Point Explanation

Wait point 1 (WP1) All CPUs exit the STOP mode at the same time. At this point there is a check to make
sure that the same startup type was selected on all CPUs. If different startup types are
selected, the startup of the programmable controller is prevented.

Wait point 2 (WP2) All CPUs start up together. Among other things, make sure that a CPU does not access
semaphores in the user program that another CPU deletes during startup due to the
different run times of their system programs.

Wait point 3 (WP3) All CPUs change from STARTUP to RUN at the same time.

Wait points 4 and 5
(WP4/WP5)

All CPUs change from HOLD to STARTUP or RUN at the same time. Execution of
the user program is started again at the same time.

Message point 1 (MP1) The selected startup was stopped due to a system or or user program error. A message
is sent to all CPUs.

Message points 2 and 3
(MP2/MP3)

The CPU changes to the HOLD mode. All CPUs are instructed to interrupt their
programs at the next command boundary and to change to the HOLD mode.

Message point 4 (MP4) The CPU changes to the STOP mode. All CPUs are instructed to interrupt their
programs at the next command boundary and to change to the STOP mode.

Message points 5 and 6
(MP5/MP6)

The CPU changes to the STOP mode as a result of the mode selector on one or more
CPUs being set to the STOP mode. All CPUs are instructed to change to the STOP
mode as well.

Multicomputing

10-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

10.5 Dealing with Errors

Undesired statuses can occur in the multicomputing mode. Possible causes of
errors are described below:

� If a CPU is prevented from starting up, no other CPU starts up since all
CPUs change to STOP if one of the CPUs is in the STOP mode.

� If the mode selector on a CPU is set to STOP or if the CPU chages to
STOP as a result of a command from the programming device, all other
CPUs are also in the STOP mode.

� If the startup type (COMPLETE RESTART / RESTART) is not uniform,
no startup takes place.

� If a CPU changes to the STOP mode due to an error or fault, the
error/fault must first be eliminated, The other CPUs will only change
from STOP to RUN when the CPU that had the problem changes to RUN.

In the multicomputing mode, all CPUs undergo a consistency check. This
checks whether the individual CPUs are obtainable and that the time stamps
of the CPUs are identical.

If the existing CPUs are not consistent, an event with ID: 0x49A4 is signaled.
Depending on the type of entry in the diagnostic buffer, this means:

� A CPU slot is not recorded.

� A CPU is not plugged in or is defective.

� The time stamps of the individual CPUs are not consistent.

The manual /235/ explains the meaning of the event IDs.

Overview

Checking the
Consistency of the
CPUs

Multicomputing

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-1

Diagnostics and Troubleshooting

This chapter describes the following:

� System diagnostics on the S7-300 and S7-400 CPUs. The chapter also
tells you how to eliminate errors that have been detected and how to deal
with various problems.

� Asynchronous and synchronous error OBs.

It is also possible to identify problems based on the display elements on the
front panel of the modules. This is, however, beyond the scope of this
chapter. For more information refer to the manuals /70/, /71/ or /101/.

For a detailed description of the individual organization blocks and system
functions, refer to the reference manual /235/.

Section Description Page

11.1 Diagnostic Information 11-2

11.2 System Status List SZL 11-4

11.3 Diagnostic Buffer 11-7

11.4 Sending Your Own Diagnostic Messages 11-8

11.5 Evaluating the Output Parameter RET_VAL 11-9

11.6 Error OBs as a Reaction to Detected Errors 11-10

11.7 Using “Replacement Values” when an Error is Detected 11-14

11.8 Time Error OB (OB80) 11-17

11.9 Power Supply Error OB (OB81) 11-18

11.10 Diagnostic Interrupt OB (OB82) 11-19

11.11 Insert/Remove Module Interrupt OB (OB83) 11-20

11.12 CPU Hardware Fault OB (OB84) 11-21

11.13 Priority Class Error OB (OB85) 11-22

11.14 Rack Failure OB (OB86) 11-23

11.15 Communication Error OB (OB87) 11-24

11.16 Programming Error OB (OB121) 11-25

11.17 I/O Access Error OB (OB122) 11-26

What Does This
Chapter Describe?

Where to Find
More Information

Chapter
Overview

11

11-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.1 Diagnostic Information

SIMATIC S7 system diagnostics helps you to detect, localize and evaluate
errors and problems and to reduce the commissioning time and down times in
your system.

You do not need to program the acquisition of diagnostic data by system
diagnostics. This is a standard feature that runs automatically. SIMATIC S7
provides various diagnostic functions. Some of these functions are integrated
on the CPU, others are provided by the modules (SMs, CPs and FMs).

Internal and external module faults are displayed on the front panels of the
module. The LED displays and how to evaluate them are described in the
manuals /70/, /71/ and /101/.

The CPU recognizes system errors and errors in the user program and enters
diagnostic messages in the system status list and the diagnostic buffer. You
can read out these diagnostic messages on the programming device.

Signal and function modules with diagnostic capability detect internal and
external module errors and generate a diagnostic interrupt to which you can
react using an interrupt OB. Figure 11-1 shows how diagnostic information is
provided in SIMATIC S7.

CPU Modules

The CPU diagnostic function
detects a system error.

The diagnostic
function of a
module detects
an error and
generates a
diagnostic
interrupt
 (OB82).

The CPU diagnostic function
detects an error in the user
program.

Diagnostic interruptSystem
Status List

Diagnostic
buffer

User program

SFCs STEP 7

Figure 11-1 Flow of Diagnostic Information

The Aim of
Diagnostics

Diagnostic
Functions

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-3

A diagnostic event causes a diagnostic message from the CPU or a diagnostic
interrupt from a signal or function module. Diagnostic events include the
following:

� Internal and external faults on a module

� System errors

� Operating mode changes

� Errors in the user program

� Inserting/removing modules

You can read out the diagnostic entries using SFC51 RDSYSST in the user
program or display the diagnostic messages in plain language with STEP 7.

They provide information about the following:

� Where and when the error occurred

� The type of diagnostic event to which the entry belongs (user-defined
diagnostic event, synchronous/asynchronous error, operating mode
change).

The CPU enters events of the standard diagnostics and extended diagnostics
(see Section 11.3) in the diagnostic buffer. It also generates a process control
group message for the standard diagnostic events if the following conditions
are met:

� You have specified that process control messages will be generated in
STEP 7.

� At least one display unit has logged on at the CPU for process control
messages.

� A process control group message is only generated when there is not
currently a process control group message of the corresponding class
(there are seven classes).

� One process control group message can be generated per class.

Diagnostic Event

Reading Out the
Diagnostic
Information

Generating
Process Control
Group Messages

Diagnostics and Troubleshooting

11-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.2 System Status List SZL

The system status list (SZL) describes the current status of the programmable
logic controller. It provides an overview of the configuration, the current
parameter assignment, the current statuses and sequences on the CPU and the
modules belonging to it.

You can only read the data of the system status list but not modify it. It is a
virtual list that is only created on request.

The information that you can display using the system status list can be
divided into four areas. Figure 11-2 shows the structure of the system status
list:

System Status List

System data

Diagnostic
status data
in the CPU

Diagnostic data
on modules

Diagnostic
buffer

Figure 11-2 System Status List

There are two ways of reading out the information in partial system status
lists, as follows:

� Implicitly, using the STEP 7 menu option on the programming device (for
example, memory configuration, static CPU data, diagnostic buffer, status
bits).

� Explicitly, using the System function SFC51 RDSYSST in the user
program by specifying the required partial list number. SFCs are
described in detail in the reference manual /235/.

Definition

Content

Reading out the
SZL

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-5

System data are intrinsic or assigned characteristic data of a CPU. Table 11-1
shows the topics about which information can be displayed (partial system
status list):

Table 11-1 System Data of the System Status List

Topic Information

List of all SZL-IDs Partial lists available for a module

Module identification Order number, type ID and version of the module

CPU characteristics Time system, system response, (for example
multicomputing) and language description of the CPU

Memory areas Memory configuration of the module (for example size
of the work memory, load memory integrated/plugged
in, size of the backup memory)

System areas System memory of the module (for example number of
memory bits, timers, counters, memory type)

Block types Which blocks (OB, DB, SDB, FC, FB) exist on the
module, the maximum number of blocks of one type
and the maximum size of a block type

Existing priority classes Which priority classes exist on the module

List of permitted system
data blocks (SDBs)

Which SDBs exist on the module, can be copied/cannot
be copied, whether or not generated as default

I/O configuration (only
S7-300 CPUs)

Maximum I/O configuration, how many racks, number
of slots

Assignment of interrupts
and errors

Assignment of interrupts/errors to OBs

Interrupt status Current status of interrupt processing/interrupts
generated

Status of the priority classesWhich OB is being executed, which priority class is
disabled due to the parameter setting

Operating mode and mode
transition

Which operating modes are possible, the last operating
mode change, the current operating mode

Capability parameters for
communication

Communication options available (for example operator
interface O/I)

System Data

Diagnostics and Troubleshooting

11-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Diagnostic status data describe the current status of the components
monitored by the system diagnostics. Table 11-2 shows the topics about
which information can be displayed (partial system status lists) :

Table 11-2 Diagnostic Status Data of the System Status List

Topic Information

Communication status dataAll the communication functions currently set in the
system

Diagnostic modules The modules with diagnostic capability logged on at the
CPU

Start information list of the
OB

Start information about the OBs of the CPU

Start event list Start events and priority classes of the OBs

Module status information Status information about all assigned modules that are
plugged in, faulty, or generate hardware interrupts

In addition to the CPU, there are also other modules with diagnostic
capabilities (SMs, CPs, FMs) whose data are entered in the system status list.
Table 11-3 shows the topics about which information can be displayed
(partial system status lists).

Table 11-3 Module Diagnostic Data of the System Status List

Topic Information

Module diagnostic
information

Module start address, internal/external faults, channel
faults, parameter errors (4 bytes)

Module diagnostic data All the diagnostic data of a particular module

The diagnostic buffer of the CPU contains diagnostic messages in the order
in which they occur. For more information about evaluating the diagnostic
buffer, refer to Section 11.3.

Table 11-4 Diagnostic Buffer of the System Status List

Topic Information

Diagnostic events grouped
by topics

For example the most recent events, start messages from
standard OBs, operating mode changes, user-defined
events

Diagnostic Status
Data on the CPU

Diagnostic Data on
Modules

Diagnostic Buffer

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-7

11.3 Diagnostic Buffer

One part of the system status list is the diagnostic buffer that contains more
information about system diagnostic events and user-defined diagnostic
events in the order in which they occurred. The information entered in the
diagnostic buffer when a system diagnostic event occurs is identical to the
start information transferred to the corresponding organization block.

The length of the diagnostic buffer depends on the particular CPU. It is
designed as a ring buffer, in other words, if the buffer is full, the next entry
overwrites the oldest entry in the buffer.

You cannot clear the entries in the diagnostic buffer and its contents are
retained even after a memory reset.

The diagnostic buffer provides you with the following possibilities:

� If the CPU changes to the STOP mode, you can evaluate the last events
leading up to the STOP and locate the cause.

� The causes of errors can be detected far more quickly increasing the
availability of the system.

� You can evaluate and optimize the dynamic system response.

You can read out the diagnostic buffer with STEP 7 or using SFC51
RDSYSST.

You can specify that the last diagnostic buffer entry before the transition from
RUN to STOP is signaled automatically to a logged on display device (for
example programming device, OP, TD). This helps to locate and remedy the
cause of the change to STOP more quickly (see also Section 11.4).

Definition

Uses

Reading Out the
Diagnostic Buffer

Last Entry Before
STOP

Diagnostics and Troubleshooting

11-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.4 Sending Your Own Diagnostic Messages

You can also extend the standard system diagnostic functions of SIMATIC S7
using the system function SFC52 WR_USMSG as follows:

� To enter your own diagnostic information in the diagnostic buffer (for
example information about the execution of the user program).

� To send user-defined diagnostic messages to logged on stations
(monitoring devices such as a PG, OP or TD).

For more information about assigning parameters to SFC52, refer to the
reference manuals /235/.

The diagnostic events are divided into event classes 1 to F. The user-defined
diagnostic events belong to event classes 8 to B. These can be divided into
two groups, as follows:

� Event classes 8 and 9 include messages with a fixed number and
predefined text that you can call up based on the number.

� Event classes A and B included messages with freely selectable numbers
(A00 to BFF) and freely selectable text.

In addition to making a user-defined entry in the diagnostic buffer, you can
also send your own user-defined diagnostic messages to logged on display
devices using SFC52 WR_USMSG. When SFC52 is called with SEND = 1,
the diagnostic message is written to the transmit buffer and automatically
sent to the station or stations logged on at the CPU.

If it is not possible to send a diagnostic message (for example because no
station is logged on or because the transmit buffer is full), the user-defined
entry is nevertheless made in the diagnostic buffer.

If you acknowledge a user-defined diagnostic event and want to record the
acknowledgment, follow the steps below:

� When the event enters the event state, write 1 to a variable of the type
BOOL, when the event leaves the event state write 0 to the variable.

� You can then monitor this variable using SFB33 ALARM.

For information about using SFB33, refer to the reference manual /235/.

Introduction

User-Defined
Diagnostic Events

Sending
Diagnostic
Messages to
Stations

Generating a
Message with
Acknowledgment

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-9

11.5 Evaluating the Output Parameter RET_VAL

Using the RET_VAL output parameter (return value), a system function
indicates whether or not the CPU was able to execute the SFC function
correctly.

The return value is of the integer data type (INT). The sign of an integer
indicates whether it is a positive or negative integer. The relationship of the
return value to the value “0” indicates whether or not an error occurred while
the function was being executed (see also Table 11-5):

� If an error occurs while the function is being executed, the return value is
less than 0. The sign bit of the integer is “1”.

� If the function is executed free of errors, the return value is greater than
or equal to 0. The sign bit of the integer is “0”.

Table 11-5 Error Information in the Return Value

Execution of the SFC by the
CPU

Return Value Sign of the Integer

Error occurred Less than “0” Negative
(sign bit is “1”)

No error Greater than or equal to
“0”

Positive
(sign bit is “0”)

If an error occurs while SFC is being executed, the SFC provides an error
code in the return value (RET_VAL).

A distinction is made between the following:

� A general error code that all SFCs can output.

� A specific error code that the SFC can output depending on its specific
function.

Some SFCs also use the output parameter RET_VAL to transfer the function
value, for example SFC64 TIME_TCK transfers the system time it has read
using RET_VAL.

For a detailed description of the RET_VAL output parameter and the
meaning of the error codes of a return value, refer to the reference manual
/235/.

Introduction

Error Information
in the Return Value

Reacting to Error
Information

Transferring the
Function Value

Further
Information

Diagnostics and Troubleshooting

11-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.6 Error OBs as a Reaction to Detected Errors

The system program can detect the following errors:

� CPU functioning incorrectly

� Error in the system program execution

� Error in the user program

� Error in the I/Os

Depending on the type of error, the CPU is set to the STOP mode or an error
OB is called.

You can design programs to react to the various types of errors and to
determine the way in which the CPU reacts. The program for a particular
error can then be saved in an error OB. If the error OB is called, the program
is executed.

An error occurs...

If an error OB is programmed, the CPU executes the
program in the OB.

If no OB is programmed, the CPU changes to the STOP
mode (exception OB81).

The CPU calls the corresponding error OB.

Figure 11-3 Error OBs as a Reaction to Detected Errors

A distinction is made between synchronous and asynchronous errors as
follows:

� Synchronous errors can be assigned to an MC7 instruction (for example
load instruction for a signal module that has been removed).

� Asynchronous errors can be assigned to a priority class or to the entire
programmable logic controller (for example cycle time exceeded).

Table 11-6 shows what types of errors can occur. Refer to the CPU
descriptions in the manuals /70/ or /101/ to find out whether your CPU
provides the specified OBs.

Detectable Errors

Programming
Reactions

Error OBs

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-11

Table 11-6 Error OBs

Error Class Error Type OB Priority

Asynchronous Time error OB80 26

Power supply error OB81 (or 28 if the error
OB is called in the

Diagnostic interrupt OB82
OB is called in the
startup program)

Remove/insert module interrupt OB83

p p g)

CPU hardware fault OB84

Priority class error OB85

Rack failure OB86

Communication error OB87

Synchronous Programming error OB121 Priority of the OB
that caused the error

Access error OB122
that caused the error

Using the local data (start information) of the error OB, you can evaluate the
type of error that has occurred.

If, for example, the CPU detects a battery fault, the operating system calls
OB81 (see Figure 11-4). You can write a program that evaluates the event
code triggered by the OB81 call. You can also write a program that brings
about a reaction, such as activating an output connected to a lamp on the
operator station.

The CPU detects a
battery fault.

Program
being

executed

OB81

Operating
system

OB81 checks the type of
power supply fault that was
detected and indicates
whether or not the problem
resulted from a battery failure.

21 Battery exhausted
(central rack) 1

22 No backup power
(central rack)

23 24 V power supply failed
(central rack) 1

31 Battery exhausted
(expansion rack) 1

32 No backup power
(expansion rack) 1

33 24 V power supply failed
(expansion rack) 1

Types of power supply fault

1 Not with the S7-300.

Figure 11-4 Using the Local Data of an Error OB

Example of Using
Error OB81

Diagnostics and Troubleshooting

11-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table 11-7 describes the temporary (TEMP) variables declared in the variable
declaration table of OB81.

The symbol Battery_error (BOOL) must also be identified as an output in the
symbol table (for example Q 4.0) so that other parts of the program can
access this data.

Table 11-7 Variable Declaration Table of OB81

Decl. Name Type Description

TEMP OB81_EV_CLASS BYTE Error class/error identifier 39xx

TEMP OB81_FLT_ID BYTE Error code:
b#16#21 = At least one backup battery of the CPU

is exhausted 1

b#16#22 = No backup voltage in the CPU
b#16#23 = Failure of the 24 V power supply in

the CPU 1

b#16#31 = At least one backup battery of an
expansion rack is exhausted 1

b#16#32 = Backup voltage not present in an
expansion rack 1

b#16#33 = Failure of the 24 V power supply of an
expansion rack 1

TEMP OB81_PRIORITY BYTE Priority class = 26/28

TEMP OB81_OB_NUMBR BYTE 81 = OB81

TEMP OB81_RESERVED_1 BYTE Reserved

TEMP OB81_RESERVED_2 BYTE Reserved

TEMP OB81_MDL_ADDR INT Reserved

TEMP OB81_RESERVED_3 BYTE Only relevant for error codes B#16#31, B#16#32,
B#16#33

TEMP OB81_RESERVED_4 BYTE
B#16#33

TEMP OB81_RESERVED_5 BYTE

TEMP OB81_RESERVED_6 BYTE

TEMP OB81_DATE_TIME DATE_AND_
TIME

Date and time at which the OB was started

1 Not with the S7-300.

Local Data of the
Error OB81

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-13

The sample STL program shows how you can read the error code in OB81.

The program is designed as follows:

� The error code in OB81 (OB81_FLT_ID) is read and compared with the
value of the event “battery exhausted” (B#16#3921).

� If the error code corresponds to the code for “battery exhausted”, the
program jumps to the label Berr and activates the output Battery_error.

� If the error code does not correspond to the code for “battery exhausted”,
the program compares the code with the code for “Battery failure”.

� If the error code corresponds to the code for “Battery failure” the program
jumps to the label Berr and activates the output Battery_error. Otherwise
the block is terminated.

STL Description

L B#16#3921
L #OB81_FLT_ID
== I
JC Berr
L b#16#3922
<> I

BEC

Berr: S #Battery_error

Compare event code “battery exhausted”
(B#16#3921) with the error code for OB81.
If the same (battery is exhausted), then
jump to Berr.
Compare event code “battery failure”
(b#16#3922) with the error code for OB81.

If not the same (no battery failure in the
CPU), then terminate the block.
Berr sets the output “Battery_error” if a
battery failure or an exhausted battery is
detected.

Note

The error codes of all organization blocks are described in the STEP 7 online
help and in the reference manual /235/.

Sample Program
for the Error OB81

Diagnostics and Troubleshooting

11-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.7 Using “Replacement Values” When an Error is Detected

With certain types of error (for example a wire break affecting an input
signal), you can supply replacement values for values that are not available
due to the error. There are two ways of supplying replacement values:

� You can assign replacement values for configurable output modules using
STEP 7. Output modules that cannot be configured have the default
replacement value 0.

� Using SFC 44 RPL_VAL, you can program replacement values in error
OBs (only for input modules).

For all load instructions that lead to synchronous errors, you can specify a
replacement value for the accumulator content in the error OB.

In the following sample program, a replacement value is made available in
SFC 44 RPL_VAL. Figure 11-5 shows how OB122 is called when the CPU
recognizes that an input module is not reacting. In this example, the
replacement value in Figure 11-6 is entered in the program so that the
program can continue to operate with feasible values.

OB1

OB122

L PIB0

T IB0
SFC44

RPL_VAL

Figure 11-5 Using a Replacement Value

If an input module fails, the L_PIB0 statement generates a synchronous error
and starts OB122. As standard, the load instruction reads in the value 0. With
SFC44, however, you can define any replacement value suitable for the
process. The SFC replaces the accumulator content with the specified
replacement value.

Replacement value: 0 0 0 1 0
0 1 0

Stop_swi I 0.1

Stand_sel I 0.3

Full_swi I 0.4

Start_swi I 0.0

Figure 11-6 Examples of Replacement Values in the Program

Overview

Sample Program
for Replacing a
Value

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-15

The following sample program could be written in OB122. Table 11-8 shows
the temporary variables that must be declared, in this case, in the variable
declaration table of OB122.

Table 11-8 Local Variables (TEMP) of OB122

Decl. Name Type Description

TEMP OB122_EV_CLASS BYTE Error class/error ID 29xx

TEMP OB122_SW_FLT BYTE Error code:
16#42, 16#43, 16#44 1, 16#45 1

TEMP OB122_PRIORITY BYTE Priority class = priority of the OB in which the error
occurred

TEMP OB122_OB_NUMBR BYTE 122 = OB122

TEMP OB122_BLK_TYPE BYTE Block type in which the error occurred

TEMP OB122_MEM_AREA BYTE Memory area and type of access

TEMP OB122_MEM_ADDR WORD Address in the memory at which the error occurred

TEMP OB122_BLK_NUM WORD Number of the block in which the error occurred

TEMP OB122_PRG_ADDR WORD Relative address of the instruction that caused the error

TEMP OB122_DATE_TIME DATE_AND_
TIME

Date and time at which the OB was started

TEMP Fehler INT Saves the error code of SFC44

1 Not for the S7-300.

Note

The error codes of all organization blocks are described in the STEP 7 online
help and in the reference manual /235/.

Diagnostics and Troubleshooting

11-16
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

STL Description

L B#16#2942
L #OB122_SW_FLT
==I
JC Aerr

L B#16#2943
<> I
JC Stop

Aerr: CALL “REPL_VAL”
VAL : = DW#16#2912
RET_VAL : = #Error

L #Error
L 0
==I
BEC

Stop: CALL “STP”

Compare the event code of OB122 with
the event code (B#16#2942) for the
acknowledgment of a time error when
reading the I/Os. If the same, jump to
“Aerr”.

Compare the event code of OB122 with
the event code (B#16#2943) for an
addressing error (writing to a module
that does not exist). If not the same,
jump to “Stop”.

Label “Aerr”: transfers DW#16#2912
(binary 10010) to SFC44 (REPL_VAL).
SFC44 loads this value in accumulator 1
(and replaces the value triggered by
the OB122 call). The SFC error code is
saved in #Error.

Compare #Error with 0 (if the same, no
error occurred when executing OB122).
Terminate the block if no error
occurred.

”Stop” label: calls SFC46 “STP” and
changes the CPU to the STOP mode.

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-17

11.8 Time Error OB (OB80)

The operating system of the CPU calls OB80 when a time error occurs. Time
errors include the following:

� Maximum cycle time exceeded (see also Section 8.4)

� Time-of-day interrupts skipped by moving the time forward

� Delay too great when processing a priority class

The time error OB (OB80) must be generated as an object in your S7
program using STEP 7. Write the program to be executed in OB80 in the
generated block and download it to the CPU as part of your user program.

You can use OB80, for example, for the following purposes:

� To evaluate the start information of OB80 and to determine which
time-of-day interrupts were skipped.

� By including SFC29 CAN_TINT, you can deactivate the skipped
time-of-day interrupt so that it is not executed and only time-of-day
interrupts relative to the new time will be executed.

If you do not deactivate skipped time-of-day interrupts in OB80, the first
skipped time-of-day interrupt is executed, all others are ignored (see also
Section 4.2).

If you do not program OB80, the CPU changes to the STOP mode when a
time error is detected.

Description

Programming
OB80

Diagnostics and Troubleshooting

11-18
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.9 Power Supply Error OB (OB81)

The operating system of the CPU calls OB81 when one of the following fails
on the CPU or in an expansion rack:

� The 24 V power supply

� A battery

� The complete backup

This OB is also called when the problem has been eliminated (the OB is
called when an event comes and goes).

You must generate the power supply error OB (OB81) as an object in your S7
program using STEP 7. Write the program to be executed in OB81 in the
generated block and download it to the CPU as part of your user program.

You can, for example, use OB81 for the following purposes:

� To evaluate the start information of OB81 and determine which power
supply error has occurred.

� To find out the number of the rack with the defective power supply.

� To activate a lamp on an operator station to indicate that maintenance
personnel should replace a battery.

If you do not program OB81, the CPU does not change to the STOP mode if
a power supply error is detected, in contrast to all other asynchronous error
OBs. The error is, however, entered in the diagnostic buffer and the
corresponding LED on the front panel indicates the error.

Description

Programming
OB81

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-19

11.10 Diagnostic Interrupt OB (OB82)

The operating system of the CPU calls OB82 when a module with diagnostic
capability on which you have enabled the diagnostic interrupt detects an error
and when the error is eliminated (OB called when the event comes and goes).

You must generate the diagnostic interrupt OB (OB82) as an object in your
S7 program using STEP 7. Write the program to be executed in OB82 in the
generated block and download it to the CPU as part of your user program.

You can, for example, use OB82 for the following purposes:

� To evaluate the start information of OB82.

� To obtain exact diagnostic information about the error that has occurred.

When a diagnostic interrupt is triggered, the module on which the problem
has occurred automatically enters 4 bytes of diagnostic data and their start
address in the start information of the diagnostic interrupt OB and in the
diagnostic buffer. This provides you with information about when an error
occurred and on which module.

With a suitable program in OB82, you can evaluate further diagnostic data
for the module (which channel the error occurred on, which error has
occurred). Using SFC51 RDSYSST, you can read out the module diagnostic
data and can enter this information in the diagnostic buffer with SFC52
WR_USRMSG. You can also send a user-defined diagnostic message to a
monitoring device (see also Section 11.4).

If you do not program OB82, the CPU changes to the STOP mode when a
diagnostic interrupt is triggered.

Description

Programming
OB82

Diagnostics and Troubleshooting

11-20
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.11 Insert/Remove Module Interrupt OB (OB83)

S7-400-CPUs monitor the presence of modules in the central rack and
expansion racks at intervals of approximately 1 second.

After the power supply is turned on, the CPU checks whether all the modules
listed in the configuration table created with STEP 7 are actually plugged in.
If all the modules are present, the actual configuration is saved and is used as
a reference value for cyclic monitoring of the modules. In each scan cycle,
the newly detected actual configuration is compared with the previous actual
configuration. If there are discrepancies between the configurations, an
insert/remove module interrupt is signaled and an entry is made in the
diagnostic buffer and the system status list (see also module monitoring in
Section 8.3). In the RUN mode, the insert/remove module interrupt OB is
started.

Note

Power supply modules, CPUs and IMs must not be removed in the RUN
mode.

Between removing and inserting a module, at least two seconds must be
allowed to pass so that the CPU can detect that a module has been removed
or inserted.

If a module is inserted in in the RUN mode, the CPU checks whether the
module type of the new module matches the original module. If they match,
the module is assigned parameters. Either the default parameters or the
parameters you assigned with STEP 7 are transferred to the module.

The insert/remove module interrupt OB (OB83) must be created as an object
in your S7 program using STEP 7. Write the program to be executed in OB83
in the generated block and download it to the CPU as part of your user
program.

You can use OB83, for example, for the following purposes:

� To evaluate the start information of OB83.

� By including system functions SFC55 to 59, to assign parameters to a
newly plugged in module (see also Section 6.2).

If you do not program OB83, the CPU changes from RUN to STOP when an
insert/remove module interrupt occurs.

Description

Assigning
Parameters to a
Newly Plugged In
Module

Programming
OB83

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-21

11.12 CPU Hardware Fault OB (OB84)

The operating system of the CPU calls OB84 when an error is detected on the
interface to the MPI network, to the K bus, or to the network card for the
distributed I/Os,

� For example an incorrect signal level on the line.

This OB is also called when the problem is eliminated (OB called when an
event comes and goes).

You must generate the CPU hardware fault OB (OB84) as an object in your
S7 program using STEP 7. Write the program to be executed in OB84 in the
generated block and download it to the CPU as part of your user program.

You can use OB84, for example, for the following purposes:

� To evaluate the start information of OB84.

� By including system function SFC52 WR_USMSG to send a message to
the diagnostic buffer.

If you do not program OB84, the CPU changes to the STOP mode when a
CPU hardware fault is detected.

Description

Programming
OB84

Diagnostics and Troubleshooting

11-22
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.13 Priority Class Error OB (OB85)

The operating system of the CPU calls OB85 in the following situations:

� When a start event for an interrupt OB exists but the OB cannot be
executed because it has not been loaded on the CPU.

� When an error occurs accessing the instance data block of a system
function block.

� When an error occurs updating the process image table (module does not
exist or defective).

You must generate the priority class error OB (OB85) as an object in your S7
program using STEP 7. Write the program to be executed in OB85 in the
generated block and download it to the CPU as part of your user program.

You can use OB85, for example, for the following purposes:

� To evaluate the start information of OB85 and determine which module is
defective or not plugged in (the module start address is specified).

� By including SFC49 LGC_GADR to find out the slot of the module
involved.

If you do not program OB85, the CPU changes to the STOP mode when a
priority class error is detected.

Description

Programming
OB85

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-23

11.14 Rack Failure OB (OB86)

The operating system of the CPU calls OB86 when a rack failure is detected,
for example in the following situations:

� Rack failure (missing or defective IM or break on the connecting cable)

� Distributed power failure on a rack

� Failure of a DP slave in a master system of the SINEC L2-DP bus system

The OB is also called when the error is eliminated (OB call when the event
comes and goes).

You must generate the rack failure OB (OB86) as an object in your S7
program using STEP 7. Write the program to be executed in OB86 in the
generated block and download it to the CPU as part of your user program.

You can use OB86, for example, for the following purposes:

� To evaluate the start information of OB86 and determine which rack is
defective or missing.

� By including system function SFC52 WR_USMSG, to send a message to
the diagnostic buffer and to a monitoring device.

If you do not program OB86, the CPU changes to the STOP mode when a
rack failure is detected.

Description

Programming
OB86

Diagnostics and Troubleshooting

11-24
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.15 Communication Error OB (OB87)

The operating system of the CPU calls OB87 when a communication error
occurs in data exchange using communication function blocks or in global
data communication, for example:

� When receiving global data, an incorrect frame ID was detected

� The data block for the status information of the global data does not exist
or is too short.

You must generate the communication error OB (OB87) as an object in your
S7 program using STEP 7. Write the program to be executed in OB87 in the
generated block and download it to the CPU as part of your user program.

You can use OB87, for example, for the following purposes:

� To evaluate the start information of OB87.

� To create a data block if the data block for the status information of
global data communication is missing.

If you do not program OB87, the CPU changes to the STOP mode when a
communication error is detected.

Description

Programming
OB87

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 11-25

11.16 Programming Error OB (OB121)

The operating system of the CPU calls OB121 when a programming error
occurs, for example:

� Addressed timers do not exist.

� A called block is not loaded.

You must generate the programming error OB (OB121) as an object in your
S7 program using STEP 7. Write the program to be executed in OB121 in the
generated block and download it to the CPU as part of your user program.

You can use OB121, for example, for the following purposes:

� To evaluate the start information of OB121.

� To enter the cause of an error in a message data block.

If you do not program OB121, the CPU changes to the STOP mode when a
programming error is detected.

Description

Programming
OB121

Diagnostics and Troubleshooting

11-26
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

11.17 I/O Access Error OB (OB122)

The operating system of the CPU calls OB122 when a STEP 7 instruction
accesses an input or output of a signal module to which no module was
assigned at the last complete restart, for example:

� Errors with direct I/O access (module defective or does not exist)

� Access to an I/O address that is not known to the CPU.

You must generate the I/O access error OB (OB122) as an object in your S7
program using STEP 7. Write the program to be executed in OB122 in the
generated block and download it to the CPU as part of your user program.

You can use OB122, for example, for the following purposes:

� To evaluate the start information of OB122

� To call system function SFC44 and supply a replacement value for an
output module so that the program has a feasible process-dependent value
for further processing.

If you do not program OB122, the CPU changes to the STOP mode when an
I/O access error is detected.

Description

Programming
OB122

Diagnostics and Troubleshooting

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-1

Sample Program for an Industrial Blending
Process

Based on an example, this chapter explains how you could design a program
for an industrial blending process. The emphasis is not to “teach
programming style” or to provide the technical knowledge required to control
a particular process. The example is simply intended to illustrate the steps
that must be followed to design a program.

Section Description Page

A.1 Example of an Industrial Blending Process A-2

A.2 Defining Logic Blocks A-5

A.3 Assigning Symbolic Names A-6

A.4 Creating the FB for the Motor A-8

A.5 Creating the FC for the Valves A-12

A.6 Creating OB1 A-14

Note

The sample program is supplied with a variable table with which you can
modify and monitor the individual variables.

What Does This
Chapter Describe?

Chapter
Overview

A

A-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

A.1 Example of an Industrial Blending Process

The sample program is based on the configuration introduced in earlier
chapters as an example of an industrial blending process.

Two ingredients (ingredient A and ingredient B) are mixed together in a
mixing tank by an agitator. The finished product is drained from the tank
through a drain valve. Figure A-1 is a diagram of the sample process.

M

M

Drain valve

Switch for tank level
measurement

Agitator motor
Inlet
valve

Feed
valve

Feed
pump

Inlet
valve

Feed
valve

Feed
pump

Flow
sensor

Area: Ingredient B

Area: Ingredient A

Area: Mixing tank
M

M M

M

Area: drain

Figure A-1 Defining Areas Within a Process

Section 1.2 described how to divide the sample process into functional areas
and individual tasks. The individual areas are described below.

The area for ingredients A and B

� The pipes for each of the ingredients are equipped with an inlet and a feed
valve and feed pump.

� The inlet pipes also have flow sensors.

� Turning on the feed pumps must be interlocked when the tank level
sensor indicates that the tank is full.

Introduction

Task

Describing the
Parts of a Process

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-3

� The activation of the feed pumps must be interlocked when the drain
valve is open.

� The inlet and feed valves must be opened at the earliest 1 second after
starting the feed pump.

� The valves must be closed immediately after the feed pumps stop (signal
from the flow sensor) to prevent ingredients leaking from the pump.

� The activation of the feed pumps is combined with a time monitoring
function, in other words, within 7 seconds after the pumps start, the flow
sensor must report a flow.

� The feed pumps must be turned off as quickly as possible if the flow
sensor no longer signals a flow while the feed pumps are running.

� The number of times that the feed pumps are started must be counted
(maintenance interval).

Mixing tank area

� The activation of the agitator motor must be interlocked when the tank
level sensor indicates “level below minimum” or the drain valve is open.

� The agitator motor sends a response signal after reaching the rated speed.
If this signal is not received within 10 seconds after the motor is
activated, the motor must be turned off.

� The number of times that the agitator motor starts must be counted
(maintenance interval).

� Three sensors must be installed in the mixing tank:

– Tank full: a normally closed contact. When the maximum tank level is
reached, the contact is opened.

– Level in tank above minimum: a normally open contact. If the
minimum level is reached, the contact is closed.

– Tank not empty: a normally open contact. If the tank is not empty, the
contact is closed.

Drain area

� Drainage of the tank is controlled by a solenoid valve.

� The solenoid valve is controlled by the operator, but must be closed again
at the latest when the “tank empty” signal is generated.

� Opening the drain valve is interlocked when

– the agitator motor is running

– the tank is empty

Sample Program for an Industrial Blending Process

A-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

To allow an operator to start, stop and monitor the process, an operator
station is also required (see also Section 1.5). The operator station is
equipped with the following:

� Switches for controlling the most important stages of the process.

� Display lamps to indicate the status of the process.

� The emergency stop switch.

Operator Station

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-5

A.2 Defining Logic Blocks

You structure the program by distributing the user program in various blocks
and by establishing a hierarchy for block calls.

Figure A-2 shows the hierarchy of the blocks to be called in the structured
program.

� The feed pump for ingredient A, the feed pump for ingredient B and the
agitator motor can be controlled by a single logic block (FB1).

� The actual parameters and the static data of FB1 are entered in three
separate instance DBs, for ingredient A, ingredient B, and for the agitator
motor respectively.

� The inlet and feed valves for ingredients A and B and the drain valve also
use a common logic block (FC1).

The function block and the function are called in OB1 and the specific
parameters required for controlling the process are then transferred.

Feed pump
ingredient A

Feed pump
ingredient B

OB1

Motor

Valves

FB1

FC1

Ingredient A

DB1

Ingredient B

DB2

Agitator
motor

DB3

Inlet valves
 A and B

Feed valves
 A and B

Agitator
motor

Drain
valve

Figure A-2 Specifying the Program Structure

Overview

Hierarchy of the
Block Calls

Sample Program for an Industrial Blending Process

A-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

A.3 Assigning Symbolic Names

Symbols are used in the example program and they must be defined in the
symbol table using STEP 7. Table A-1 shows the symbolic names and the
absolute addresses used to control the feed pumps, the agitator motor, and the
inlet valves.

Table A-1 Symbolic Addresses of the Feed Pumps, the Agitator Motor and the Inlet Valves

Symbolic Name Address Data Type Description

Feed_pump_A_start I0.0 BOOL Start button of the feed pump for ingredient A

Feed_pump_A_stop I0.1 BOOL Stop button of the feed pump for ingredient A

Flow_A I0.2 BOOL Ingredient A flowing

Inlet_valve_A Q4.0 BOOL Activates the inlet valve for ingredient A

Feed_valve_A Q4.1 BOOL Activates the feed valve for ingredient A

Feed_pump_A_on Q4.2 BOOL Lamp for “feed pump ingredient A running”

Feed_pump_A_off Q4.3 BOOL Lamp for “feed pump ingredient A not running”

Feed_pump_A Q4.4 BOOL Activates the feed pump for ingredient A

Feed_pump_A_fault Q4.5 BOOL Lamp for “feed pump A fault”

Feed_pump_A_maint Q4.6 BOOL Lamp for “feed pump A maintenance”

Feed_pump_B_start I0.3 BOOL Start button of the feed pump for ingredient B

Feed_pump_B_stop I0.4 BOOL Stop button of the feed pump for ingredient B

Flow_B I0.5 BOOL Ingredient B flowing

Inlet_valve_B Q5.0 BOOL Activates the inlet valve for ingredient B

Feed_valve_B Q5.1 BOOL Activates the feed valve for ingredient B

Feed_pump_B_on Q5.2 BOOL Lamp for “feed pump ingredient B running”

Feed_pump_B_off Q5.3 BOOL Lamp for “feed pump ingredient B not running”

Feed_pump_B Q5.4 BOOL Activates the feed pump for ingredient B

Feed_pump_B_fault Q5.5 BOOL Lamp for “feed pump B fault”

Feed_pump_B_maint Q5.6 BOOL Lamp for ”feed pump B maintenance”

Agitator_running I1.0 BOOL Response signal of the agitator motor

Agitator_start I1.1 BOOL Agitator start button

Agitator_stop I1.2 BOOL Agitator stop button

Agitator Q8.0 BOOL Activates the agitator

Agitator_on Q8.1 BOOL Lamp for “agitator running”

Agitator_off Q8.2 BOOL Lamp for “agitator not running”

Agitator_fault Q8.3 BOOL Lamp for “agitator motor fault”

Agitator_maint Q8.4 BOOL Lamp for “agitator motor maintenance”

Defining Symbolic
Names

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-7

Table A-2 shows the symbolic names and the absolute addresses used to
control the sensors and display the level in the tank.

Table A-2 Symbolic Addresses of the Sensors and for Displaying the Level of the Tank

Symbolic Name Address Data Type Description

Tank_below_max I1.3 BOOL Sensor “mixing tank not full”

Tank_above_min I1.4 BOOL Sensor “mixing tank above minimum level”

Tank_not_empty I1.5 BOOL Sensor “mixing tank not empty”

Tank_max_disp Q9.0 BOOL Lamp for “mixing tank full”

Tank_min_disp Q9.1 BOOL Lamp “mixing tank below minimum level”

Tank_empty_disp Q9.2 BOOL Lamp for “mixing tank empty”

Table A-3 shows the symbolic names and the absolute addresses used to
control the drain valve.

Table A-3 Symbolic Addresses for the Drain

Symbolic Name Address Data Type Description

Drain_open I0.6 BOOL Button for opening the drain valve

Drain_closed I0.7 BOOL Button for closing the drain valve

Drain Q9.5 BOOL Activates the drain valve

Drain_open_disp Q9.6 BOOL Lamp for “drain valve open”

Drain_closed_disp Q9.7 BOOL Lamp for “drain valve closed”

Table A-4 shows the symbolic names and the absolute addresses used to
control the other elements of the program.

Table A-4 Symbolic Addresses of the Other Program Elements

Symbolic Name Address Data Type Description

EMER_STOP_off I1.6 BOOL EMERGENCY STOP switch

Reset_maint I1.7 BOOL Reset button for the maintenance display lamps of the
three motors

Motor_block FB1 FB1 FB for controlling pumps and motor

Valve_block FC1 FC1 FC for controlling the valves

DB_feed_pump_A DB1 FB1 Instance DB for controlling feed pump A

DB_feed_pump_B DB2 FB1 Instance DB for controlling feed pump B

DB_agitator DB3 FB1 Instance DB for controlling the agitator motor

Sample Program for an Industrial Blending Process

A-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

A.4 Creating the FB for the Motor

The FB for the motor contains the following logical functions:

� There is a start and a stop input.

� Interlocks allow the operation of the devices (pumps and agitator motor).
The status of the interlocks is saved in the temporary local data (L stack)
of OB1 (“Motor_enable”, “Valve_enable”) and is logically combined with
the start and stop inputs when the FB for the motor is executed.

� Responses from the devices must appear within a certain time. Otherwise,
it is assumed that an error or fault has occurred. The function then stops
the motor.

� The point in time and the duration of the response or error/fault cycle
must be specified.

� If the start button is pressed and the motor enabled, the device switches
itself on and runs until the stop button is pressed.

� If the device is switched on, a timer starts to run. If the response signal
from the device is not received before the timer has expired, the device
stops.

Figure A-3 illustrates the inputs and outputs of the general FB for the motor.

Start

Stop

Reset_Maint

Response

Timer_No

Start_Dsp

Fault

Stop_Dsp

Response_Time

Motor

Maint
Motor

Figure A-3 Inputs and Outputs of the FB for the Motor

What is Required
of the FB

Specifying the
Inputs and
Outputs

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-9

If you use a multiple instance FB for the motor (for controlling both pumps
and the motor) you must define general parameter names for the inputs and
outputs.

The FB for the motor in the sample process requires the following:

� It must have signals from the operator station to stop and start the motor
and pumps.

� It requires a response signal from the motor and pumps to indicate that
the motor is running.

� It must calculate the time between sending the signal to activate the
motor and receiving the response signal. If no response signal is received
in this time, the motor must be switched off.

� It must turn the lamps on the operator station on and off.

� It supplies a signal to activate the motor.

These requirements can be specified as inputs and outputs to the FB.
Table A-5 shows the parameters of the FB for the motor in out sample
process.

Table A-5 Input and Output Parameters

Parameters for Pumps and
Motor

Input Output In/Out

Start �

Stop �

Response �

Reset_maint �

Timer_no �

Response_time �

Fault �

Start_dsp �

Stop_dsp �

Maint �

Motor �

Defining the
Parameters for the
FB

Sample Program for an Industrial Blending Process

A-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

You must declare the input, in/out and output parameters of the FB for the
motor.

With FBs, the input, output, in/out, and static variables are saved in the
instance DB specified in the call statement. The temporary variables are
stored in the L stack.

Table A-6 Variable Declaration Table of the FB for the Motor

Address Declaration Name Type Initial value

0.0 IN Start BOOL FALSE

0.1 IN Stop BOOL FALSE

0.2 IN Response BOOL FALSE

0.3 IN Reset_maint BOOL FALSE

2 IN Timer_no TIMER

4 IN Response_time S5TIME S5T#0MS

6.0 OUT Fault BOOL FALSE

6.1 OUT Start_dsp BOOL FALSE

6.2 OUT Stop_dsp BOOL FALSE

6.3 OUT Maint BOOL FALSE

8.0 IN_OUT Motor BOOL FALSE

10.0 STAT Time_bin WORD W#16#0

12.0 STAT Time_BCD WORD W#16#0

14.0 STAT Starts INT 0

16.0 STAT Start_edge BOOL FALSE

In STEP 7, every block that is called by a different block must be created
before the block that contains its call. In the sample program, you must
therefore create the FB for the motor before OB1.

The statement section of FB1 appears as follows in the STL programming
language:

Network 1 Start/Stop and latching

A(
O #Start
O #Motor
)
AN #Stop
= #Motor

Declaring the
Variables of the FB
for the Motor

Programming the
FB for the Motor

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-11

Network 2 Startup monitoring

A #Motor
L #Response_time
SD #Timer_no
AN #Motor
R #Timer_no
L #Timer_no
T #Time_bin
LC #Timer_no
T #Time_BCD
A #Timer_no
AN #Response
S #Fault
R #Motor

Network 3 Start lamp / Fault response

A #Response
= #Start_dsp
R #Fault

Network 4 Stop lamp

AN #Response
= #Stop_dsp

Network 5 Counting the starts

A #Motor
FP #Start_edge
JCN lab1
L #Starts
+ 1
T #Starts

lab1: NOP

Network 6 Maintenance

L #Starts
L 50
>=I
= #Maint

Network 7 Maintenance reset

AN #Reset_maint
A #Maint
JCN END
L 0
T #Starts

END: NOP 0

Sample Program for an Industrial Blending Process

A-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

A.5 Creating the FC for the Valves

The function for the inlet and feed valve and for the drain valve contains the
following logical functions:

� There is an input for opening and an input for closing the valves.

� Interlocks allow the valves to be opened. The state of the interlocks is
saved in the temporary local data (L stack) of FB1 (“Valve_enable”) and
is logically combined with the inputs for opening and closing when the
FC for the valves is executed.

Table A-7 shows the parameters that must be transferred to the FC.

Table A-7 Input, In/Out, and Output Parameters

Parameters for the Valves Input Output In/Out

Open �

Close �

Dsp_open �

Dsp_closed �

Valve �

Figure A-4 shows the inputs and outputs of the general FC for the valves.
The devices that call the FB for the motor transfer input parameters. The FC
for the valves returns output parameters.

Ventil

Open

Close

Dsp_Open

Valve

Dsp_Closed

Figure A-4 Inputs and Outputs of the FC for the Valves

What is Required
of the FC?

Specifying the
Inputs and
Outputs

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-13

Just as with the FB for the motor, you must also declare the input, in/out and
output parameters for the FC for the valves.

With FCs, the temporary variables are saved in the L stack. The input, output
and in/out variables are saved as pointers to the logic block that called the
FC. Additional memory space in the L stack (after the temporary variables) is
used for these variables.

Table A-8 Variable Declaration Table of the FC for the Valves

Address Declaration Name Type Default

0.0 IN Open BOOL FALSE

0.1 IN Close BOOL FALSE

2.0 OUT Dsp_open BOOL FALSE

2.1 OUT Dsp_closed BOOL FALSE

4.0 IN_OUT Valve BOOL FALSE

The FC1 function for the valves must be created before OB1 since the called
blocks must be created before the calling blocks.

The statement section of FC1 appears as shown below in the STL
programming language:

Network 1 Open/close and latching

A(
O #Open
O #Valve
)
AN #Close
= #Valve

Network 2 Display “Valve open”

A #Valve
= #Dsp_open

Network 3 Display “Valve closed”

AN #Valve
= #Dsp_closed

Declaring the
Variables of the FC
for the Valves

Programming the
FC for the Valves

Sample Program for an Industrial Blending Process

A-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

A.6 Creating OB1

OB1 decides the structure of the sample program. OB1 also contains the
parameters that are transferred to the various functions, for example:

� The STL networks for the feed pumps and the motor supply the FB for
the motor with the input parameters for starting (“Start”), stopping
(“Stop”), the response (“Response”), and for resetting the maintenance
display (”Reset_maint”). The FB for the motor is executed in every cycle
of the PLC.

� If the FB for the motor is executed, the inputs Timer_no and
Response_time inform the function of the timer being used and which
time must be measured.

� The outputs of the FB for the motor are saved at the addresses Error and
Motor in the network that called the FB.

� The FC for the valves is executed automatically in every cycle of the
PLC.

The program uses the FB for the motor with different instance DBs to handle
the tasks for controlling the feed pumps and the agitator motor.

Overview

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-15

Table A-9 contains the variable declaration table for OB1. The first 20 bytes
contain the start information of OB1 and must not be modified.

Table A-9 Variable Declaration Table for OB1

Address Declaration Name Type

0.0 TEMP OB1_EV_CLASS BYTE

1.0 TEMP OB1_SCAN1 BYTE

2.0 TEMP OB1_PRIORITY BYTE

3.0 TEMP OB1_OB_NUMBR BYTE

4.0 TEMP OB1_RESERVED_1 BYTE

5.0 TEMP OB1_RESERVED_2 BYTE

6.0 TEMP OB1_PREV_CYCLE INT

8.0 TEMP OB1_MIN_CYCLE INT

10.0 TEMP OB1_MAX_CYCLE INT

12.0 TEMP OB1_DATE_TIME DATE_AND_TIME

20.0 TEMP Enable_motor BOOL

20.1 TEMP Enable_valve BOOL

20.2 TEMP Start_fulfilled BOOL

20.3 TEMP Stop_fulfilled BOOL

20.4 TEMP Inlet_valve_A_open BOOL

20.5 TEMP Inlet_valve_A_closed BOOL

20.6 TEMP Feed_valve_A_open BOOL

20.7 TEMP Feed_valve_A_closed BOOL

21.0 TEMP Inlet_valve_B_open BOOL

21.1 TEMP Inlet_valve_B_closed BOOL

21.2 TEMP Feed_valve_B_open BOOL

21.3 TEMP Feed_valve_B_closed BOOL

22.4 TEMP Open_drain BOOL

22.5 TEMP Close_drain BOOL

22.6 TEMP Valve_closed_fulfilled BOOL

Declaring
Variables for OB1

Sample Program for an Industrial Blending Process

A-16
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

In STEP 7, every block that is called by a different block must be created
before the block containing its call. In the sample program, you must
therefore create both the FB for the motor and the FC for the valves before
the program in OB1.

The statement section of OB1 appears as shown below in the STL
programming language:

Network 1 Interlocks for feed pump A

A “EMER_STOP_off”
A “Tank_below_max”
AN “Drain”
= #Enable_motor

Network 2 Calling FB motor for ingredient A

A “Feed_pump_A_start”
A #Enable_motor
= #Start_fulfilled
A(
O “Feed_pump_A_stop”
ON #Enable_motor
)
= #Stop_fulfilled
CALL “Motor_block”, “DB_feed_pump_A”

Start :=#Start_fulfilled
Stop :=#Stop_fulfilled
Response :=“Flow_A”
Reset_maint :=“Reset_maint”
Timer_no :=T12
Response_time

:=S5T#7S
Fault :=“Feed_pump_A_fault”
Start_dsp :=“Feed_pump_A_on”
Stop_dsp :=“Feed_pump_A_off”
Maint :=“Feed_pump_A_maint”
Motor :=“Feed_pump_A”

Network 3 Delaying the valve enable ingredient A

A “Feed_pump_A”
L S5T#1S
SD T 13
AN “Feed_pump_A”
R T 13
A T 13
= #Enable_valve

Creating the
Program for OB1

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-17

Network 4 Inlet valve control for ingredient A

AN “Flow_A”
AN “Feed_pump_A”
= #Close_valve_fulfilled
CALL “Valve_block”

Open :=#Enable_valve
Close :=#Close_valve_fulfilled
Dsp_open :=#Inlet_valve_A_open
Dsp_closed :=#Inlet_valve_A_closed
Valve :=“Inlet_valve_A”

Network 5 Feed valve control for ingredient A

AN “Flow_A”
AN “Feed_pump_A”
= #Close_valve_fulfilled
CALL “Valve_block”

Open :=#Enable_valve
Close :=#Close_valve_fulfilled
Dsp_open :=#Feed_valve_A_open
Dsp_closed :=#Feed_valve_A_closed
Valve :=“Feed_valve_A”

Network 6 Interlocks for for feed pump B

A “EMER_STOP_off”
A “Tank_below_max”
AN “Drain”
= #Enable_motor

Network 7 Calling FB Motor for ingredient B

A “Feed_pump_B_start”
A #Enable_motor
= #Start_fulfilled
A(
O “Feed_pump_B_stop”
ON #Enable_motor
)
= #Stop_fulfilled
CALL “Motor_block”, “DB_feed_pump_B”

Start :=#Start_fulfilled
Stop :=#Stop_fulfilled
Response :=“Flow_B”
Reset_maint :=“Reset_maint”
Timer_no :=T14
Response_time :=S5T#7S
Fault :=“Feed_pump_B_fault”
Start_dsp :=“Feed_pump_B_on”
Stop_dsp :=“Feed_pump_B_off”
Maint :=“Feed_pump_B_maint”
Motor :=“Feed_pump_B”

Sample Program for an Industrial Blending Process

A-18
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Network 8 Delaying valve enable for ingredient B

A “Feed_pump_B”
L S5T#1S
SD T 15
AN “Feed_pump_B”
R T 15
A T 15
= #Enable_valve

Network 9 Inlet valve control for ingredient B

AN “Flow_B”
AN “Feed_pump_B”
= #Close_valve_fulfilled
CALL “Valve_block”

Open :=#Enable_valve
Close :=#Close_valve_fulfilled
Dsp_open :=#Inlet_valve_B_open
Dsp_closed :=#Inlet_valve_B_closed
Valve :=“Inlet_valve_B”

Network 10 Feed valve control for ingredient B

AN “Flow_B”
AN “Feed_pump_B“
= #Close_valve_fulfilled
CALL “Valve_block”

Open :=#Enable_valve
Close :=#Close_valve_fulfilled
Dsp_open :=#Feed_valve_B_open
Dsp_closed :=#Feed_valve_B_closed
Valve :=“Feed_valve_B”

Network 11 Interlocks for agitator

A “EMER_STOP_off”
A “Tank_above_min”
AN “Agitator_fault”
AN ”Drain”
= #Enable_motor

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 A-19

Network 12 Calling FB motor for agitator

A “Agitator_start”
A #Enable_motor
= #Start_fulfilled
A(
O “Agitator_stop”
ON #Enable_motor
)
= #Stop_fulfilled
CALL “Motor_block”, “DB_agitator”

Start :=#Start_fulfilled
Stop :=#Stop_fulfilled
Response :=“Agitator_running”
Reset_maint :=”Reset_maint”
Timer_no :=T16
Response_time :=S5T#10S
Fault :=“Agitator_fault”
Start_dsp :=“Agitator_on”
Stop_dsp :=“Agitator_off”
Maint :=“Agitator_maint”
Motor :=“Agitator_B”

Network 13 Interlocks for drain valve

A “EMER_STOP_off”
A “Tank_not_empty”
AN “Agitator”
= #Enable_valve

Network 14 Drain valve control

A “Drain_open”
A #Enable_valve
AN “Agitator”
= #Open_drain
A(
O “Drain_closed”
ON #Enable_valve
)
= #Close drain
CALL “Valve_block”

Open :=#Open_drain
Close :=#Close_drain
Dsp_open :=“Drain_open_disp”
Dsp_closed :=“Drain_closed_disp”
Valve :=“Drain”

Network 15 Tank level display

AN “Tank_below_max”
= “Tank_max_disp”
AN “Tank_above_min”
= “Tank_min_disp”
AN “Tank_not_empty”
= “Tank_empty_disp”

Sample Program for an Industrial Blending Process

A-20
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Sample Program for an Industrial Blending Process

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 B-1

Sample Program for Communication SFBs
for Configured Connections

This chapter explains the data exchange between two S7-400-CPUs and the
use of communication SFBs for configured connections in the user program
based on a simple example.

Section Description Page

B.1 Overview B-2

B.2 Sample program on the sending CPU B-3

B.3 Sample program on the receiving CPU B-6

B.4 Using the Sample Program B-8

B.5 Call Hierarchy of the Blocks in the Sample Program B-9

What Does This
Chapter Describe?

Chapter
Overview

B

B-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

B.1 Overview

The sample program shows how data are exchanged between two
S7 400-CPUs using communication SFBs for configured connections.

The following communication SFBs are used in the sample program.

Table B-1 Communication SFBs in the Sample Program

SFB Function

SFB 8/
SFB 9

USEND/
URCV

Uncoordinated data exchange using a send and a
receive SFB (bilateral communication)

SFB12/
SFB13

BSEND/
BRCV

Field-oriented data exchange using a send and a
receive SFB (bilateral communication)

SFB14 GET Reads data from the remote device (unilateral
communication)

SFB15 PUT Writes data to the remote device (unilateral
communication)

SFB19 START Triggers a complete restart on the remote device

SFB20 STOP Sets the remote device to STOP

SFB21 RESUME Triggers a restart on the remote device

SFB22 STATUS Queries the status of the remote device

SFB23 USTATUS Receives the status of the remote device sent
unsolicited by the remote device

This example uses a bilateral configured homogeneous S7 connection. Both
the single and paired blocks are used on this connection.

The connection ID on both CPUs is W#16#0001.

The description of this example is based on the following hardware
configuration.

CPU 4xy CPU 4xy

MPI

Figure B-1 Hardware Configuration for the Sample Program

Introduction

Communication
SFBs Used

Connection Type

Hardware
Requirements

Sample Program for Communication SFBs for Configured Connections

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 B-3

B.2 Sample Program on the Sending CPU

In the sample program on the sending CPU the data transfer is triggered by
memory bits. You can change the memory bits used in the variable table
“VAT 1”. A rising edge at a memory bit starts the corresponding
communication SFB.

The following table indicates the assignment of the memory area.

Table B-2 Assignment of the Memory Area

Memory Bit Assignment

M20.0 triggers USEND

M20.2 triggers BSEND

M20.4 triggers GET

M20.5 triggers PUT

M20.6 triggers START

M20.7 triggers STOP

M21.0 triggers RESUME

M21.1 triggers STATUS

M21.2 triggers USTATUS

Introduction

Memory Bits Used

Sample Program for Communication SFBs for Configured Connections

B-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table B-3 User-Defined Blocks on the Sending CPU

Block Content Function

OB100 Call for FC EXAMPLE_PRESET_SFBs_1 Startup OB: When the SFBs are

FC EXAMPLE_
PRESET_SFBs_1

Initialization call for SFBs
USEND, BSEND, GET, PUT, START, STOP,
RESUME, STATUS, USTATUS

Startup OB: When the SFBs are
called later in the user program,
only control and diagnostic
parameters need to be specified.

OB35 FC calls to control the SFBs Cyclic interrupt OB: for cyclic FC
calls

FC CHECK Evaluation of
DONE, NDR, ERROR, STATUS

Checks the status of the SFB

FC EXAMPLE_USEND Call for SFB USEND and FC CHECK

FC EXAMPLE_BSEND Call for SFB BSEND and FC CHECK

FC EXAMPLE_GET Call for SFB GET and FC CHECK

FC EXAMPLE_PUT Call for SFB PUT and FC CHECK
C t lli SFB ll ith FCFC EXAMPLE_START Call for SFB START and FC CHECK Controlling SFB calls with FCs
prevents the SFBs being called

FC EXAMPLE_STOP Call for SFB STOP and FC CHECK
prevents the SFBs being called
again before they are completed.

FC EXAMPLE_RESUME Call for SFB RESUME and FC CHECK

FC EXAMPLE_STATUS Call for SFB STATUS and FC CHECK

FC
EXAMPLE_USTATUS

Call for SFB USTATUS and FC CHECK

DB IDB_USEND,
DB IDB_BSEND,
DB IDB_GET,
DB IDB_PUT,
DB IDB_START,
DB IDB_STOP,
DB IDB_RESUME
DB IDB_STATUS,
DB IDB_USTATUS

Actual parameters and static data of the SFBs
used

Instance DBs of the SFBs used

DB data_usend Send, control and check data for FC
EXAMPLE_USEND

DB data_bsend Send, control and check data for FC
EXAMPLE_BSEND

DB data_get Send, control and check data for FC
EXAMPLE_GET

DB data_put Source area, control and check data for FC
EXAMPLE_PUT

Shared DBs

DB data_program_cntr Control and check data for SFBs START, STOP,
RESUME, STATUS and USTATUS

DB data_get_source DB on the remote CPU,from which the data are
read by SFB GET

DB data_put_destination DB on the remote CPU in which the data are
written by SFB PUT

Blocks on the
Sending CPU

Sample Program for Communication SFBs for Configured Connections

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 B-5

In the sample program on the sending CPU, symbols are used that were
defined with STEP 7 in the symbols table. Table B-4 shows the symbolic
names and the absolute addresses of the sample program.

Table B-4 Symbolic Names and the Corresponding Addresses of the Sample Program on the Sending CPU

Symbolic Name Address Data Type Comment

IDB_USEND DB8 SFB8
IDB_BSEND DB12 SFB12

IDB_GET DB14 SFB14

IDB_PUT DB15 SFB15

IDB_START DB19 SFB19 Instance DBs

IDB_STOP DB20 SFB20

IDB_RESUME DB21 SFB21

IDB_STATUS DB22 SFB22

IDB_USTAUTS DB23 SFB23

data_usend DB100 DB100

data_bsend DB102 DB102

data_get DB104 DB104

data_put DB105 DB105 Shared DBs

data_program_cntr DB106 DB106

data_get_source DB107 DB107

data_put_destination DB108 DB108

CHECK FC99 FC99

EXAMPLE_USEND FC100 FC100

EXAMPLE_PUT FC101 FC101

EXAMPLE_STOP FC102 FC102

EXAMPLE_STATUS FC103 FC103

EXAMPLE_BSEND FC105 FC105 FCs
EXAMPLE_GET FC107 FC107

FCs

EXAMPLE_START FC108 FC108

EXAMPLE_RESUME FC109 FC109

EXAMPLE_USTATUS FC110 FC110

EXAMPLE_
PRESET_SFBs 1

FC111 FC111

CYCL_EXC OB1 OB1

CYC_INT5 OB35 OB35 OBs

COMPLETE RESTART OB100 OB100

BSEND SFB12 SFB12

GET SFB14 SFB14

PUT SFB15 SFB15

START SFB19 SFB19
SFBs

STOP SFB20 SFB20
SFBs

RESUME SFB21 SFB21

STATUS SFB22 SFB22

USTATUS SFB23 SFB23

Defining Symbolic
Names

Sample Program for Communication SFBs for Configured Connections

B-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

B.3 Sample Program on the Receiving CPU

In the sample program on the receiving CPU, the data transfer is triggered by
memory bits. You can change the memory bits used in the variable table
“VAT 2”. Signal state 1 in a memory bit enables the corresponding receive
SFB.

The following table indicates the assignment of the memory area.

Table B-5 Assignment of the Memory Area

Memory Bit Function

M20.1 Enables URCV

M20.3 Enables BRCV

Table B-6 User-Defined Blocks on the Receiving CPU

Block Content Function

OB100 Call for the FC
EXAMPLE_PRESET_SFBs 2

Startup OB: When the SFB is called
later in the user program, only control

FC
EXAMPLE_PRESET_SFBs 2

Initialization calls for the SFBs
URCV, BRCV

p g , y
and diagnostic parameters need to be
specified.

OB35 Call for the FCs to control the SFBs Cyclic interrupt OB: cyclic FC calls

FC CHECK Evaluation of DONE, NDR, ERROR,
STATUS

Checks the status of the SFB

FC EXAMPLE_URCV Call for SFB URCV and
FC CHECK Controlling SFB calls with FCs

prevents the SFBs being called again
FC EXAMPLE_BRCV Call for SFB BRCV and

FC CHECK

prevents the SFBs being called again
before they are completed.

DB IDB_URCV,

DB IDB_BRCV

Actual parameters and static data of the
SFBs used Instance DBs of the SFBs used

DB data_urcv Receive, control and check data for FC
EXAMPLE_URCV

DB data_brcv Receive, control and check data for FC
EXAMPLE_BRCV

Shared DBs
DB data_get_source DB with the data for the SFB GET of the

communication partner

Shared DBs

DB data_put_destination DB in which the data will be written by
SFB PUT

Introduction

Memory Bits Used

Blocks on the
Receiving CPU

Sample Program for Communication SFBs for Configured Connections

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 B-7

In the sample program on the receiving CPU, symbols are used that were
defined with STEP 7 in the symbols table. Table B-7 shows the symbolic
names and the absolute addresses of the sample program.

Table B-7 Symbolic Names and Corresponding Addresses of the Sample Program on the Receiving CPU

Symbolic Name Address Data Type Comment

IDB_URCV DB9 SFB9
Instance DBs

IDB_BRCV DB13 SFB13
Instance DBs

data_urcv DB101 DB101

data_brcv DB103 DB103
Shared DBs

data_get_source DB107 DB107
Shared DBs

data_put_destination DB108 DB108

CHECK FC99 FC99

EXAMPLE_URCV FC104 FC104
FCs

EXAMPLE_BRCV FC106 FC106
FCs

EXAMPLE_ PRESET_SFBs 2 FC112 FC112

CYC_INT5 OB35 OB35
OBs

COMPLETE RESTART OB100 OB100
OBs

URCV SFB9 SFB9
SFBs

BRCV SFB13 SFB13
SFBs

Defining Symbolic
Names

Sample Program for Communication SFBs for Configured Connections

B-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

B.4 Using the Sample Program

To use the sample program, follow the steps below:

1. Reset the memory on both CPUs and then download the programs to the
appropriate CPUs.

2. Run a complete restart on both CPUs.
This sets the connection references and the send and receive areas. The
send areas have the number of the corresponding SFB entered, the receive
areas have the value 0 entered.

3. Call up the variable tables “VAT 1” (on the sending CPU) and “VAT 2”
(on the receiving CPU).

4. On the receiving CPU, enable the receive SFBs by setting memory bits
M20.1 and M20.3 to 1 in variable table “VAT 2”.

5. Start the data transfer on the sending CPU by setting the corresponding
memory bit to 1 in variable table “VAT 1” (see Table B-2).

6. If required, change the content of the send areas.

7. If an error occurs in the data transfer, evaluate the output parameters
ERROR and STATUS of the relevant communication SFB.

Procedure

Sample Program for Communication SFBs for Configured Connections

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 B-9

B.5 Call Hierarchy of the Blocks in the Sample Program

OB100 FC EXAMPLE_
PRESET_SFBs_1

DB IDB_USEND
SFB
USEND

DB IDB_USTATUS
SFB
USTATUS

OB35 FC EXAMPLE_
USEND

DB IDB_USEND
SFB
USEND

FC CHECK

FC EXAMPLE_
BSEND

DB IDB_BSEND

SFB BSEND

FC EXAMPLE_
GET

DB IDB_GET

SFB GET

FC EXAMPLE_
PUT

DB IDB_PUT

SFB PUT

FC EXAMPLE_
START

DB IDB_START

SFB START

FC EXAMPLE_
STOP

DB IDB_STOP

SFB STOP

FC EXAMPLE_
RESUME

DB IDB_RESUME
SFB
RESUME

FC EXAMPLE_
STATUS

DB IDB_STATUS
SFB
STATUS

FC EXAMPLE_
USTATUS

DB IDB_USTATUS
SFB
USTATUS

FC CHECK

FC CHECK

FC CHECK

FC CHECK

FC CHECK

FC CHECK

FC CHECK

FC CHECK

Figure B-2 Call Hierarchy on the Sending CPU

Call Hierarchy on
the Sending CPU

Sample Program for Communication SFBs for Configured Connections

B-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

OB100 FC EXAMPLE_
PRESET_SFBs_2

DB IDB_URCV

SFB URCV

DB IDB_BRCV

SFB BRCV

OB35 FC EXAMPLE_
URCV

DB IDB_URCV

SFB URCV

FC CHECK

FC EXAMPLE_
BRCV

DB IDB_BRCV

SFB BRCV

FC CHECK

Figure B-3 Call Hierarchy on the Receiving CPU

The code for the sample programs is in the
directory step 7\examples\com_sfb.

Call Hierarchy on
the Receiving
CPU

STL Program

Sample Program for Communication SFBs for Configured Connections

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-1

Data and Parameter Types

This chapter describes the following:

� Which data types are available for static or temporary variables and
parameters.

� Which data types you can assign to the local data of the individual block
types.

� Restrictions you should note when transferring parameters.

Section Descriptionm Page

C.1 Data Types C-2

C.2 Using Complex Data Types C-6

C.3 Using Arrays to Access Data C-7

C.4 Using Structures to Access Data C-10

C.5 Using User-Defined Data Types to Access Data C-12

C.6 Using the ANY Parameter Type C-15

C.7 Assigning Data Types to Local Data of Logic Blocks C-17

C.8 Restrictions when Transferring parameters C-19

What Does This
Chapter Describe?

Chapter
Overview

C

C-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

C.1 Data Types

All the data in a user program must be identified by a data type. The
following data types are available:

� Elementary data types provided by STEP 7

� Complex data types that you yourself can create by combining
elementary data types

� User-defined data types

� Parameter types with which you define parameters to be transferred to
FBs or FCs

Each elementary data type has a defined length. The data type BOOL has, for
example, only one bit, a byte (BYTE) consists of 8 bits, a word (WORD)
consists of 2 bytes (16 bits), a double word (DWORD) has 4 bytes (32 bits).
Table C-1 lists the elementary data types.

Table C-1 Description of the Elementary Data Types

Type and
Description

Size
in
Bits

Format Options Range and Numeric
Representation (lowest to
highest value)

Example

BOOL
(Bit)

1 Boolean text TRUE/FALSE TRUE

BYTE
(Byte)

8 Hexadecimal
number

B16#0 to B16#FF L B#16#10
L byte#16#10

WORD 16 Binary number

Hexadecimal
number

BCD
Decimal number
unsigned

2#0 to
2#1111_1111_1111_1111
W#16#0 to W#16#FFFF

C#0 to C#999
B#(0,0) to B#(255,255)

L 2#0001_0000_0000_0000

L W#16#1000
L word16#1000
L C#998
L B#(10,20)
L byte#(10,20)

DWORD
(Double word)

32 Binary number

Hexadecimal
number

Decimal number
unsigned

2#0 to
2#1111_1111_1111_1111_
1111_1111_1111_1111
DW#16#0000_0000 to
DW#16#FFFF_FFFF
B#(0,0,0,0) to
B#(255,255,255,255)

2#1000_0001_0001_1000_
1011_1011_0111_1111

L DW#16#00A2_1234
L dword#16#00A2_1234
L B#(1, 14, 100, 120)
L byte#(1,14,100,120)

INT
(Integer)

16 Decimal number
signed

-32768 to 32767 L 1

DINT
(Integer, 32 bits)

32 Decimal number
signed

L#–2147483648 to
L#2147483647

L L#1

Introduction

Elementary Data
Types

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-3

Table C-1 Description of the Elementary Data Types, continued

Type and
Description

ExampleRange and Numeric
Representation (lowest to
highest value)

Format OptionsSize
in
Bits

REAL
(floating point)

32 IEEE
floating point
number

Upper limit: ±3.402823e+38
Lower limit: ±1.175 495e-38

L 1.234567e+13

S5TIME
(SIMATIC time)

16 S7 time in steps
of
10 ms (default)

S5T#0H_0M_0S_10MS to
S5T#2H_46M_30S_0MS and
S5T#0H_0M_0S_0MS

L S5T#0H_1M_0S_0MS
L S5TIME#0H_1H_1M_0S_0MS

TIME
(IEC time)

32 IEC time in steps
of 1 ms, integer
signed

-T#24D_20H_31M_23S_648MS
to
T#24D_20H_31M_23S_647MS

L T#0D_1H_1M_0S_0MS
L TIME#0D_1H_1M_0S_0MS

DATE
(IEC date)

16 IEC date in steps
of 1 day

D#1990-1-1 to
D#2168-12-31

L D#1994-3-15
L DATE#1994-3-15

TIME_OF_DAY 32 Time in steps of
1 ms

TOD#0:0:0.0 to
TOD #23:59:59.999

L TOD#1:10:3.3
L TIME_OF_DAY#1:10:3.3

CHAR
(Character)

8 ASCII characters ’A’,’B’ etc. L ’E’

Data and Parameter Types

C-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Complex data types define data groups that are larger than 32 bits or data
groups consisting of other data types. STEP 7 permits the following complex
data types:

� DATE_AND_TIME

� STRING

� ARRAY

� STRUCT

� FBs and SFBs

Table C-2 describes the complex data types. They define structures and arrays
either in the variable declaration of the logic block or in a data block.

Table C-2 Description of the Complex Data Types

Data Type Description

DATE_AND_TIME
DT

Defines an area with 64 bits (8 bytes). This data type saves the
following information (in binary coded decimal format): year
in byte 0, month in byte 1, day in byte 2, hours in byte 3,
minutes in byte 4, seconds in byte 5, milliseconds in byte 6 and
half of byte 7, weekday in the other half of byte 7.

STRING Defines a group with a maximum of 254 characters (data type
CHAR). The standard area reserved for a character string is
256 bytes long. This is the space required to save 254 characters
and a header of 2 bytes. You can reduce the memory required for
a string by defining the number of characters that will be stored in
the character string (for example: string[9] ‘Siemens’).

ARRAY Defines a multi-dimensional grouping of one data type (either
elementary or complex). For example: “ARRAY [1..2,1..3] OF
INT” defines and array in the format 2 x 3 consisting of
integers. You access the data stored in an array using the Index
(“[2,2]”). You can define up to a maximum of 6 dimensions in
one array. The index can be any integer (-32768 to 32767).

STRUCT Defines a grouping of any combination of data types. You can,
for example, define an array of structures or a structure of
structures and arrays.

FB, SFB You determine the structure of the assigned instance data block
and allow the transfer of instance data for several FB calls in
one instance DB (multiple instances, see Section 2.10).

In STEP 7, you can combine complex and elementary data types to create
your own “user-defined” data type (UDT). UDTs have their own name and
can therefore be used more than once. In a UDT, you can structure large
amounts of data and simplify the input of data types when you want to create
data blocks or declare variables in the variable declaration.

Complex Data
Types

User-Defined Data
Types

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-5

In addition to elementary, complex, and user-defined data types, you can also
define parameter types for formal parameters that are transferred between
blocks (see Table C-3). STEP 7 recognizes the following parameter types:

� TIMER or COUNTER: this specifies a particular timer or particular counter
that will be used when the block is executed. If you supply a value to a
formal parameter of the TIMER or COUNTER parameter type, the
corresponding actual parameter must be a timer or a counter, in other words,
you enter “T” or “C” followed by a positive integer.

� BLOCK: specifies a particular block to be used as an input or output. The
declaration of the parameter determines the block type to be used (FB, FC,
DB etc.). If you supply values to a formal parameter of the BLOCK
parameter type, specify a block address as the actual parameter. Example:
“FC101” (when using absolute addressing) or “Valve” (with symbolic
addressing).

� POINTER: references the address of a variable. A pointer contains an
address instead of a value. When you supply a value to a formal
parameter of the parameter type POINTER, you specify an address as the
actual parameter. In STEP 7, you can specify a pointer in the pointer
format or simply as an address (for example M 50.0). Example of a
pointer format for addressing the data beginning at M 50.0: P#M50.0

� ANY: this is used when the data type of the actual parameter is unknown
or when any data type can be used. For more information about the ANY
parameter type refer to Section C.6.

A parameter type can also be used in a user-defined data type (UDT). For
more information about UDTs, refer to Section C.5.

Table C-3 Parameter Types

Parameter Size Description

TIMER 2 Bytes Indicates a timer to be used by the program in the called
logic block.
Format: T1

COUNTER 2 Bytes Indicates a particular counter to be used by the program in
the called logic block.
Format: C10

BLOCK_FB
BLOCK_FC
BLOCK_DB
BLOCK_SDB

2 Bytes Indicates a particular block to be used by the program in
the called logic block.
Format: FC101

DB42

POINTER 6 Bytes Identifies the address.
Format: P#M50.0

ANY 10 Bytes Is used when the data type of the current parameter is
unknown (see Section C.6).
Format: P#M50.0 BYTE 10

P#M100.0 WORD 5

Parameter Types

Data and Parameter Types

C-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

C.2 Using Complex Data Types

You can create new data types by combining the elementary and complex data
types to create the following complex data types:
� Array (data type ARRAY): an array combines a group of one data type to

form a single unit.
� Structure (data type STRUCT): a structure combines different data types

to form a single unit.
� Character string (data type STRING): a character string defines a

one-dimensional array with a maximum of 254 characters (data type
CHAR). A character string can only be transferred as a unit. The length of
the character string must match the formal and actual parameter of the
block.

� Date and time (data type DATE_AND_TIME): the date and time data
type stores the year, month, day, hours, minutes, seconds, milliseconds
and weekday.

Figure C-1 shows how arrays and structures can structure data types in one
area and save information. You define an array or a structure either in a DB
or in the variable declaration of an FB, OB or FC.

1,1

1,2

1,3

2,1

2,2

2,3

ARRAY [1..2,1..3]
INTEGER

Integer

Integer

Integer

Integer

Integer

Integer

STRUCT
Integer

Character

Real number

Boolean
value

Byte

INT

BYTE

CHAR

REAL

BOOL

Structures

Arrays

Figure C-1 Structure of Arrays and Structures

Overview

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-7

C.3 Using Arrays to Access Data

An array combines a group of one data type (elementary or complex) to form
a unit. You can create an array consisting of arrays. When you define an
array, you must do the following:

� Assign a name to the array.

� Declare an array with the keyword ARRAY.

� Specify the size of the array using an index. You specify the first and last
number of the individual dimensions (maximum 6) in the array. You enter
the index in square braces with each dimension separated by a comma
and the first and last number of the dimension by two periods. The
following index defines, for example, a three-dimensional field:

[1..5,-2..3,30..32]

� You specify the data type of the data to be contained in the array.

Figure C-2 shows an array with three integers. You access the data stored in
an array using the index. The index is the number in square braces. The index
of the second integer, for example is Op_temp[2].

An index can be any integer (-32768 to 32767) including negative values.
The array in Figure C-2 could also be defined as ARRAY [-1..1]. The index
of the first integer would then be Op_temp[-1], the second would be
Op_temp[0] and the third integer would then be Op_temp[1].

1

2

3

Op_temp = ARRAY [1..3]
INTEGER

Op_temp[1]

Op_temp[2]

Op_temp[3]

Address Name Type Init. Value Comment

Op_temp

STRUCT

ARRAY[1..3]

INT

0.0

+0.0

*2.0

=3.0 END_STRUCT

Figure C-2 Array

Arrays

Example

Data and Parameter Types

C-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

An array can also describe a multi-dimensional group of data types.
Figure C-3 shows a two-dimensional array consisting of integers. You access
the data in a multi-dimensional array using the index. In this example in
Figure C-3, the first integer is Op_temp[1,1], the third is Op_temp[1,3], the
fourth is Op_temp[2,1], and the sixth is Op_temp[2,3].

1,1

1,2

1,3

2,1

2,2

2,3

Op_temp = ARRAY [1..2,1..3]
INTEGER

Integer

Integer

Integer

Integer

Integer

Integer

Figure C-3 Multi-dimensional Array

You can define up to a maximum of 6 dimensions (6 indexes) for a field. You
could, for example, define the variable Op_temp as follows as a
six-dimensional field:

ARRAY [1..3,1..2,1..3,1..4,1..3,1..4]

The index of the first element in this array is Op_temp[1,1,1,1,1,1]. The
index of the last element Op_temp[3,2,3,4,3,4].

You define arrays when you declare the data in a DB or in the variable
declaration. When you declare the array, you specify the keyword (ARRAY)
followed by the size in square brackets, as follows:

[lower limit value..upper limit value]

In a multi-dimensional array, you also specify the upper and lower limit
values and separate the individual dimensions by a comma. Figure C-4
illustrates the declaration for creating a field in the format 2 x 3 (like the
array illustrated in Figure C-3).

Address Name Type Init. Value Comment

Heat_2x3

STRUCT

ARRAY[1..2,1..3]

INT

0.0

+0.0

*2.0

=6.0 END_STRUCT

Figure C-4 Creating an Array

Creating Arrays

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-9

When you are creating the arrays, you can assign an initial value to each
element of the array. STEP 7 provides two methods for entering initial
values:

� Entry of individual values: for each element of the array, you specify a
value that is valid for the data type of the array. You specify the values in
the order of the elements: [1,1]. Remember that the individual elements
must be separated from each other by a comma.

� Specifying a repetition factor: with sequential elements that have the
same initial value, you can specify the number of elements (the repetition
factor) and the initial value for these elements. The format for entering
the repetition factor is x(y), where x is the repetition factor and y is the
value to be repeated.

If you use the array declared in Figure C-4, you can specify the initial value
for all six elements as follows: 17, 23, -45, 556, 3342, 0. You can set the
initial value of all six elements to 10 by specifying 6(10). You could specify
certain values for the first two elements and then set the remaining four
elements to 0 by specifying the following: 17, 23, 4(0).

You access the data in an array using the index of the element of the array.
The index is used with the symbolic name.

Example: If the array declared in Figure C-4 begins at the first byte of DB20
(motor), you access the second element in the array with the following
address:

Motor.Heat_2x3[1,2].

You can transfer arrays as parameters. If a parameter is declared in the
variable declaration as ARRAY, you must transfer the entire array (and not
individual elements). An element of an array can, however be assigned to a
parameter when you call a block, providing the element of the array
corresponds to the data type of the parameter.

If you use arrays as parameters, the arrays do not need to have the same
name (they do not even need a name). Both arrays (the formal parameter and
the actual parameter) must however have the same structure. An array in the
format 2 x 3 consisting of integers, for example, can only be transferred as a
parameter when the formal parameter of the block is defined as an array in
the format 2 x 3 consisting of integers and the actual parameter that is
provided by the call operation is also a field in the format 2 x 3 consisting of
integers.

Specifying Initial
Values for an Array

Accessing Data in
an Array

Using Arrays as
Parameters

Data and Parameter Types

C-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

C.4 Using Structures to Access Data

A structure combines various data types (elementary and complex data types,
including fields and structures) to form one unit. You can group the data to
suit your process control. You can therefore also transfer parameters as a data
unit and not as single elements. Figure C-5 illustrates a structure consisting
of an integer, a byte, a character, a floating point number and a Boolean
value.

A structure can be nested to a maximum of 8 levels (for example a structure
consisting of structures containing arrays).

STRUCT
Integer

Character

Real number

Boolean value

Byte

INT

BYTE

CHAR

REAL

BOOL

Figure C-5 Structure

You define structures when you declare data within a DB or in the variable
declaration of a logic block.

Figure C-6 illustrates the declaration of a structure (Stack_1) that consists of
the following elements: an integer (for saving the amount), a byte (for saving
the original data), a character (for saving the control code), a floating point
number (for saving the temperature) and a Boolean memory bit (for
terminating the signal).

Address Name Type Init. Value Comment

Stack_1

 Amount

 Original_data

 Temperature

STRUCT

INT

BYTE

REAL

100

0.0

+0.0

+2.0

+4.0

+6.0

 Control_code CHAR

 End BOOL+8.1
END_STRUCT

FALSE
=10.0

120

Figure C-6 Creating a Structure

Structures

Creating a
Structure

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-11

If you want to assign an initial value to every element of a structure, you
specify a value that is valid for the data type and the name of the element.
You can for example assign the following initial values (to the structure
declared in Figure C-6):

Amount = 100
Original_data = B#(0)
Control_code = ‘C’
Temperature = 120
End = False

You access the individual elements of a structure. You can use symbolic
addresses (for example Stack_1.Temperature). You can, however specify the
absolute address at which the element is located (example: if Stack_1 is
located in DB20 starting at byte 0, the absolute address for amount is
DB20.DBW0 and the address for temperature is DB20.DBD6).

You can transfer structures as parameters. If a parameter is declared as
STRUCT in the variable declaration, you must transfer a structure with the
same components. An element of a structure can, however, also be assigned
to a parameter when you call a block providing the element of the structure
corresponds to the data type of the parameter.

If you use structures as parameters, both structures (for the formal parameters
and the actual parameters) must have the same components, in other words
the same data types must be arranged in the same order.

Assigning Initial
Values for a
Structure

Saving and
Accessing Data in
Structures

Using Structures
as Parameters

Data and Parameter Types

C-12
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

C.5 Using User-Defined Data Types to Access Data

User-defined data types (UDTs) can combine elementary and complex data
types. You can assign a name to UDTs and use them more than once.
Figure C-7 illustrates the structure of the UDT consisting of an integer, a
byte, a character, a floating point number, and a Boolean value.

Instead of entering all the data types singly or as a structure, you only need to
specify “UDT20” as the data type and STEP 7 automatically assigns the
corresponding memory space.

UDT20
Integer

Character

Real
number

Boolean value

Byte

INT

BYTE

CHAR

REAL

BOOL

Figure C-7 User-Defined Data Type

You define UDTs with STEP 7. Figure C-8 illustrates a UDT consisting of the
following elements: an integer (for saving the amount), a byte (for saving the
original data), a character (for saving the control code), a floating point
number (for saving the temperature) and a Boolean memory bit (for
terminating the signal). You can assign a symbolic name to the UDT in the
symbol table (for example process data).

Address Name Type Init. Value Comment

Stack_1

 Amount

 Original_data

 Temperature

STRUCT

INT

BYTE

REAL

100

0.0

+0.0

+2.0

+4.0

+6.0

 Control_code CHAR

 End BOOL+8.1
END_STRUCT

FALSE
=10.0

120

Figure C-8 Creating a User-Defined Data Type

User-Defined Data
Types

Creating a
User-Defined Data
Type

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-13

Once you have created a UDT, you can use the UDT like a data type if for
example, you declare the data type UDT200 for a variable in a DB (or in the
variable declaration of an FB). Figure C-9 shows a DB with the variables
process_data_1 with the data type UDT200. You only specify UDT200 and
process_data_1. The arrays shown in italics are created when you compile
the DB.

Address Name Type Init. Value Comment

Process_data_1

STRUCT

UDT200

END_STRUCT

0.0

+6.0

=6.0

Figure C-9 Using a User-Defined Data Type

To assign initial values to each element of a UDT, specify a value that is
valid for the data type and the name of each element. You could, for
example, assign the following initial values (for the UDT declared in
Figure C-9):

Amount = 100
Original_data = B#(0)
Control_code = ‘C’
Temperature = 120
End = False

If you declare a variable as a UDT, the initial values of the variables are the
values you specified when you created the UDT.

You access the individual elements of a UDT. You can use symbolic
addresses (for example Stack_1.Temperature). You can, however specify the
absolute address at which the element is located (example: if Stack_1 is
located in DB20 starting at byte 0, the absolute address for amount is
DB20.DBW0 and the address for temperature is DB20.DBD6).

You can transfer variables of the UDT type as parameters. If a parameter is
declared as UDT in the variable declaration, you must transfer a UDT with
the same structure. An element of a UDT can, however, also be assigned to a
parameter when you call a block providing the element of the UDT
corresponds to the data type of the parameter.

Assigning Initial
Values for a
User-Defined Data
Type

Saving and
Accessing Data in
a User-Defined
Data Type

Using
User-Defined Data
Types as
Parameters

Data and Parameter Types

C-14
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

By using UDTs you have created once, you can generate a large number of
data blocks with the same data structure. You can then use these data blocks
to enter different actual values for specific tasks.

If, for example, you structure a UDT for a formula (for example for blending
colors), you can assign this UDT to several DBs each containing different
amounts.

UDT1 “Formula”

DB17 “DARK_BLUE”

DB22 “LIGHT_BLUE”

DB23 “TURQUOISE”

User-defined data type

Figure C-10 Example of Assigning Several DBs to One UDT

The structure of the data block is determined by the UDT assigned to it.

Advantages of DBs
with an Assigned
UDT

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-15

C.6 Using the ANY Parameter Type

You can define formal parameters for a block that are suitable for actual
parameters of any data type. This is particularly useful when the data type of
the actual parameter that is provided when the block is called is unknown or
can vary (and when any data type is permitted). In the variable declaration of
the block, you declare the parameter as data type ANY. You can then assign
an actual parameter of any data type in STEP 7.

STEP 7 assigns 80 bits of memory for a variable of the ANY data type. If
you assign an actual parameter to this formal parameter, STEP 7 codes the
start address, the data type and the length of the actual parameter in the
80 bits. (For more detailed information about the structure of the data saved
in these 80 bits, refer to Section B.11.) The called block analyzes the 80 bits
of data saved for the ANY parameter and obtains the information required for
further processing.

If you declare the data type ANY for a parameter, you can assign an actual
parameter of any data type to the formal parameter. In STEP 7, you can
assign the following data types as actual parameters:

� Elementary data types: you specify the absolute address or the symbolic
name of the actual parameter.

� Complex data types: you specify the symbolic name of the data with a
complex data type (for example arrays and structures).

� Timers, counters and blocks: you specify the number (for example T1,
C20 or FB6).

Figure C-11 shows how data are transferred to an FC with parameters of the
ANY data type. In this example, FC100 has three parameters (in_par1,
in_par2 and in_par3) declared as the ANY data type.

� When FB10 calls FC100, FB10 transfers an integer (the static variable
speed), a word (MW100) and a double word in DB10 (DB10.DBD40).

� When FB11 calls FC10, FB11 transfers a field of real numbers (the
temporary variable thermo) a Boolean value (M 1.3) and a timer (T2).

Overview

Assigning an
Actual Parameter
to an ANY
Parameter

Data and Parameter Types

C-16
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

INTSpeed

FB10

CALL FC100
in_par1 := #Speed
in_par2 := MW100
in_par3 := DB10.DBD40

FC100

with DB10

Variable declaration

Variable declaration

STAT

ANY

in_par2 ANY

in_par3 ANY

in_par1IN

IN

IN

ARRAY [1..3]Thermo

FB11 with DB20

Variable declaration

TEMP

in_par2
in_par3

in_par1
M 1.3

T 2

#Thermo

FC100

REAL

Figure C-11 Assigning Actual Parameters to an ANY Parameter

It is, however, possible to assign not only individual addresses (for example
MW100) to an ANY parameter but you can also specify a data area. If you
want to assign a data area as the actual parameter, use the following format
of a constant to specify the amount of data to be transferred:

p# Area ID Byte.Bit Data Type Repetition Factor

For the data type element, you can specify all elementary data types and the
data type DATE_AND_TIME in the format for constants. If the data type is
not BOOL, the bit address of 0 (x.0) must be specified. Table C-4 illustrates
examples of the format for specifying memory areas to be transferred to an
ANY parameter.

Table C-4 Using the Format for Constants for an ANY Parameter

Actual Parameter Description

p# M 50.0 BYTE 10 Specifies 10 bytes in the byte memory area:
MB50 to MB59.

p# DB10.DBX5.0 S5TIME 3 Specifies 3 units of data of the data type S5TIME, that
are located in DB10:
DB byte 5 to DB byte 10.

p# Q 10.0 BOOL 4 Specifies 4 bits in the outputs area:
Q 10.0 to Q 10.3.

Specifying a Data
Area for an ANY
Parameter

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-17

C.7 Assigning Data Types to Local Data of Logic Blocks

With STEP 7, the data types (elementary and complex data types and
parameter types) that can be assigned to the local data of a block in the
variable declaration are restricted.

Table C-5 illustrates the restriction for declaring local data for an OB. Since
you cannot call an OB, an OB cannot have parameters (input, output or
in/out). Since an OB does not have an instance DB, you cannot declare any
static variables for an OB. The data types of the temporary variables of an
OB can be elementary or complex data types and the data type ANY.

Table C-6 illustrates the restrictions when declaring local data for an FB. Due
to the instance DB, there are less restrictions when declaring local data for an
FB. When declaring input parameters there are no restrictions whatsoever;
for an output parameter you cannot declare any parameter types, and for
in/out parameters only the parameter types POINTER and ANY are
permitted. You can declare temporary variables as the ANY data type. All
other parameter types are illegal.

Table C-7 shows the restrictions when declaring local data for an FC. Since
an FC does not have an instance DB, it also has no static variables. For input,
output and in/out parameters of an FC, only the parameter types POINTER
and ANY are permitted. You can also declare temporary variables of the
ANY parameter type.

Table C-5 Valid Data Types for the Local Data of an OB

Declaration Elementary
Data Types

Complex
Data Types

Parameter TypesDeclaration
Type Data Types Data Types

TIMER COUNTER BLOCK POINTER ANY

Input No No No No No No No

Output No No No No No No No

In/out No No No No No No No

Static No No No No No No No

Temporary Yes1 Yes1 No No No No Yes1

1 Located in the L stack of the OB

Valid Data Types

Data and Parameter Types

C-18
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Table C-6 Valid Data Types for the Local Data of an FB

Declaration Elementary
Data Types

Complex
Data Types

Parameter TypesDeclaration
Type Data Types Data Types

TIMER COUNTER BLOCK POINTER Any

Input Yes Yes Yes Yes Yes Yes Yes

Output Yes Yes No No No No No

In/out Yes Yes1 No No No Yes Yes

Static Yes Yes No No No No No

Temporary Yes2 Yes2 No No No No Yes2

1 Located as 48 bit pointer in the instance DB
2 Located in the L stack of the FB

Table C-7 Valid Data Types for the Local Data of an FC

Declaration Elementary
Data Types

Complex
Data Types

Parameter TypesDeclaration
Type Data Types Data Types

TIMER COUNTER BLOCK POINTER Any

Input Yes Yes Yes Yes Yes Yes Yes

Output Yes Yes No No No Yes Yes

In/out Yes Yes No No No Yes Yes

Static No No No No No No No

Temporary Yes1 Yes1 No No No No Yes1

1 Located in the L stack of the FC

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-19

C.8 Restrictions When Transferring Parameters

When you assign actual parameters to formal parameters, you can either
specify an absolute address, a symbolic address or a constant. STEP 7
restricts the valid assignments for the various parameters. Output and in/out
parameters, for example, cannot be assigned a constant value (since the
purpose of an output or an in/out parameter is to change its value). These
restrictions apply particularly to parameters with complex data types to
which neither an absolute address nor a constant can be assigned. Table C-8
illustrates the restrictions involving the data types of actual parameters that
are assigned to formal parameters.

Table C-8 Restriction When Transferring Parameters Between Blocks

Elementary Data Types

Declara-
tion Type

Absolute
Address

Symbolic Name
(in the Symbol Table)

Local Block
Symbol

Constant

Input Yes Yes Yes Yes

Output Yes Yes Yes No

In/out Yes Yes Yes No

Complex Data Type

Declara-
tion Type

Absolute
Address

Symbolic Name of the
Element of the DB

(in the Symbol Table)

Local Block
Symbol

Constant

Input No Yes Yes No

Output No Yes Yes No

In/out No Yes Yes No

Restrictions When
Transferring
Parameters
Between Blocks

Data and Parameter Types

C-20
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

You can assign the formal parameters of a calling FC to the formal
parameters of a called FC. Figure C-12 illustrates the formal parameters of
FC10 that are assigned as actual parameters to the formal parameters of
FC12.

STEP 7 restricts the assignment of formal parameters of an FC as actual
parameters for the formal parameters of a different FC. You cannot, for
example, assign parameters with complex data types or a parameter type as
the actual parameter. Table C-9 shows the restrictions when assigning
parameters when one FC calls another.

Input

Param_2 Output

Param_3 In/out

Param_1

FC10

Call FC12
A_Param := Param_1
B_Param := Param_2
C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FC12

Function (FC) Call Function (FC)

Variable declaration Variable declaration

Figure C-12 Transferring Parameters from One FC to Another FC

Table C-9 Restrictions When One FC Calls Another

Declaration Type
Elementary
Data Types

Complex
Data Types

Parameter Types
Declaration Type Data Types Data Types

TIMER COUNTER BLOCK POINTER ANY

Input → Input Yes No No No No No No

Input → Output No No No No No No No

Input → In/out No No No No No No No

Output → Input No No No No No No No

Output → Output Yes No No No No No No

Output → In/out No No No No No No No

In/out → Input Yes No No No No No No

In/out → Output Yes No No No No No No

In/out → In/out Yes No No No No No No

Restrictions When
an FC Calls
Another FC

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-21

You can assign the formal parameters of a calling FB to the formal
parameters of a called FC. Figure C-13 shows the formal parameters of FB10
that are assigned as the actual parameters for the formal parameters of FC12.

STEP 7 restricts the assignment of the formal parameters of an FB to the
formal parameters of an FC. You cannot, for example, assign parameters of
the parameter type as actual parameters. Table C-10 shows the restrictions for
assigning parameters when an FB calls an FC.

Input

Param_2 Output

Param_3 In/out

Param_1

FB10

Call FC12
A_Param := Param_1
B_Param := Param_2
C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FC12

Function block (FB) Call Function (FC)

with DB10

Variable declaration Variable declaration

Figure C-13 Transferring Parameters from and FB to an FC

Table C-10 Restrictions When an FC is Called by a FB

Declaration Type
Elementary
Data Types

Complex
Data Types

Parameter Types
Declaration Type Data Types Data Types

TIMER COUNTER BLOCK POINTER ANY

Input → Input Yes Yes No No No No No

Input → Output No No No No No No No

Input → In/out No No No No No No No

Output → Input No No No No No No No

Output → Output Yes Yes No No No No No

Output → In/out No No No No No No No

In/out → Input Yes No No No No No No

In/out → Output Yes No No No No No No

In/out → In/out Yes No No No No No No

Restrictions When
an FC is Called by
an FB

Data and Parameter Types

C-22
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

You can assign the formal parameters of a calling FC to the formal
parameters of a called FB. Figure C-14 shows the formal parameters of
FC10, that are assigned as actual parameters to the formal parameters of
FB12.

STEP 7 restricts the assignment of formal parameters of an FC to the formal
parameters an FB. You cannot, for example, assign parameters with a
complex data type as actual parameters. You can, however, assign input
parameters of the types TIMER, COUNTER, or BLOCK to the input
parameters of the called FB. Table C-11 shows the restrictions for assigning
parameters when an FC calls an FB.

Input

Param_2 Output

Param_3 In/out

Param_1

FC10

Call FB12,DB11
A_Param := Param_1
B_Param := Param_2
C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FB12

Function (FC) Call Function block (FB)

with DB11

Variable declaration Variable declaration

Figure C-14 Transferring Parameters from an FC to an FB

Table C-11 Restrictions when an FC Calls an FB

Declaration Type
Elementary
Data Types

Complex
Data Types

Parameter Types
Declaration Type Data Types Data Types

TIMER COUNTER BLOCK POINTER ANY

Input → Input Yes No Yes Yes Yes No No

Input → Output No No No No No No No

Input → In/out No No No No No No No

Output → Input No No No No No No No

Output → Output Yes No No No No No No

Output → In/out No No No No No No No

In/out → Input Yes No No No No No No

In/out → Output Yes No No No No No No

In/out → In/out Yes No No No No No No

Restrictions when
an FC Calls an FB

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 C-23

You can assign the formal parameters of a calling FB to the formal
parameters of the called FB. Figure C-15 shows the formal parameters of
FB10 that are assigned as actual parameters to the formal parameters of
FB12.

STEP 7 restricts the assignment of the formal parameters of an FB to the
formal parameters of another FB. You cannot, for example, assign input and
output parameters with complex data types as the actual parameters for the
input and output parameters of a called FB. You can, however, assign input
parameters of the parameter types TIMER, COUNTER, or BLOCK to the
input parameters of the called FB. Table C-12 shows the restrictions for
assigning parameters when an FB calls another FB.

Input

Param_2 Output

Param_3 In/out

Param_1

FC10

Call FB12,DB11
A_Param := Param_1
B_Param := Param_2
C_Param := Param_3

Input

B_Param Output

C_Param In/out

A_Param

FB12

Function block (FB) Call Function block (FB)

with DB11

Variable declaration Variable declaration

with DB10

Figure C-15 Transferring Parameters from one FB to Another FB

Table C-12 Restrictions when one FB Calls Another FB

Declaration Type
Elementary
Data Types

Complex
Data Types

Parameter Types
Declaration Type Data Types Data Types

TIMER COUNTER BLOCK POINTER ANY

Input → Input Yes Yes Yes Yes Yes No No

Input → Output No No No No No No No

Input → In/out No No No No No No No

Output → Input No No No No No No No

Output → Output Yes Yes No No No No No

Output → In/out No No No No No No No

In/out → Input Yes No No No No No No

In/out → Output Yes No No No No No No

In/out → In/out Yes No No No No No No

Restrictions when
an FB Calls
Another FB

Data and Parameter Types

C-24
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Data and Parameter Types

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 D-1

References

/30/ Primer: S7-300 Programmable Controller,
Quick Start

/70/ Manual: S7-300 Programmable Controller,
Hardware and Installation

/71/ Reference Manual: S7-300, M7-300 Programmable Controllers
Module Specifications

/72/ Instruction List: S7-300 Programmable Controller

/100/ Manual: S7-400/M7-400 Programmable Controllers,
Hardware and Installation

/101/ Reference Manual: S7-400/M7-400 Programmable Controllers
Module Specifications

/102/ Instruction List: S7-400 Programmable Controller

/230/ Manual: Standard Software for S7,
Converting S 5 Programs

/231/ User Manual: Standard Software for S7 and M7,
STEP 7

/232/ Manual: Statement List (STL) for S7-300 and S7-400,
Programming

/233/ Manual: Ladder Logic (LAD) for S7-300 and S7-400,
Programming

/235/ Reference Manual: System Software for S7-300 and S7-400
System and Standard Functions

/236/ Manual: FBD for S7-300 and S7-400,
Programming

/250/ Manual: Structured Control Language (SCL) for S7-300 and S7-400,
Programming

/251/ Manual: GRAPH for S7-300 and S7-400,
Programming Sequential Control Systems

/252/ Manual: HiGraph for S7-300 and S7-400,
Programming State Graphs

/254/ Manual: Continuous Function Charts for S7-300, S7-400, M7,
Continuous Function Charts

D

D-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

/270/ Manual: S7-PDIAG for S7-300 and S7-400
Configuring Process Diagnostics for LAD, FBD and STL

/500/ Manual: SIMATIC NET,
NCM S7 for Industrial Ethernet

/501/ Manual: SIMATIC NET,
NCM S7 for PROFIBUS

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Glossary-1

Glossary

A

Actual parameters replace the formal parameters when a function block (FB)
or function (FC) is called. Example: the formal parameter “Start” is replaced
by the actual parameter “I 3.6”.

An address is part of a STEP 7 statement and specifies what the processor
should execute the instruction on. Addresses can be absolute or symbolic.

B

The backplane bus of a SIMATIC S7 programmable logic controller supplies
the modules in the rack with the internal operating voltage and allows data
exchange between the modules. On the S7-400, the backplane bus is divided
into the peripheral bus (P bus) and communication bus (C bus). On the
S7-300, the backplane bus has a modular design in the form of U-shaped
profiles that connect two modules together.

In SIMATIC S7, information stored in the RAM areas (in the work memory)
can be:

� Saved by means of a backup battery; in this case the contents of the work
memory and the read/write memory area of the load memory are retained,
as are counters, timers, and the bit memory (the area can have parameters
assigned)

� Saved without a backup battery (less maintenance); in this case a
maximum (CPU-specific) number of data from the work memory, the
read/write memory area of the load memory, and a maximum number of
counters, timers, and memory bits can be saved permanently in the
backup buffer of the CPU.

Actual Parameters

Address

Backplane Bus

Backup

Glossary-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

The backup memory allows memory areas to be retained during power down
without a backup battery. A selectable number of timers, counters, memory
bits and bytes of a data block can be declared as backed up or retentive.

Blocks are part of the user program and can be distinguished by their
function, their structure, or their purpose. STEP 7 provides the following
types of blocks:

� Logic blocks (FB, FC, OB, SFB, SFC)

� Data blocks (DB, SDB)

� User-defined data types (UDT)

The block stack (B stack) in the system memory of the CPU contains the
return addresses and the data block register when blocks are called.

C

The CPU is the central module in a programmable controller in which the
user program is stored and processed. It consists of an operating system,
processing unit, and communication interfaces.

The communication bus (K bus) is part of the backplane bus of the SIMATIC
S7-300, S7-400 programmable logic controllers. It allows fast
communication between programmable modules, the CPU and the
programming device. This means that, for example, all the programmable
modules in a programmable controller can be programmed using one
programming device connected to the CPU.

The communication SFBs are system function blocks for exchanging data
and for program management.
Examples for data exchange: USEND, ERCV, GET. Examples of program
management: setting the CPU of the remote communication partner to the
STOP mode, querying the status of the remote communication partner

The communication SFCs are system functions for exchanging data and for
aborting existing connections established by communication SFCs.

Backup Memory

Block

Block Stack

Central Processing
Unit (CPU)

Communication
Bus (K Bus)

Communication
SFBs for
Configured
Connections

Communication
SFCs for
Non-Configured
Connections

Glossary

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Glossary-3

When a CPU starts up (for example, when the mode selector is moved from
STOP to RUN or when power is turned on), before cyclic program processing
starts (OB1), either the organization block OB101 (restart; only in the
S7-400) or OB100 (complete restart) is processed first. In a complete restart
the process-image input table is read in and the STEP 7 user program
processed starting with the first statement in OB1.

A connection is established between stations that exchange data with each
other. A connection is only possible when the stations are attached to a
common physical medium (for example a bus system). A logical connection
(software) is then established between the stations.

Counters are an area in the system memory of the CPU. The contents of these
counters can be changed using STEP 7 instructions (for example, up counter,
down counter).

D

Static data are the local data of a function block that are saved in the instance
data block and are therefore retained until the function block is executed
again.

Temporary data are local data of a block that are located in the L stack while
the block is being executed. When execution of the block is completed, the
data are no longer available.

Data blocks are areas in the user program which contain user data. There are
shared data blocks which can be accessed by all logic blocks, and there are
instance data blocks which are associated with a particular function block
(FB) call. In contrast to all other block types, data blocks do not contain any
instructions.

Using a data type, you specify how the value of a variable or constant is used
in the user program. In SIMATIC S7, there are two types of data type
available complying with IEC 1131-3: elementary data types and complex
data types.

Complex data types are created by the user with the data type declaration.
They do not have a name of their own and cannot be used more than once. A
distinction is made between arrays and structures. The data types STRING
and DATE AND TIME belong to this category.

Complete Restart

Connection

Counter (C)

Data, Static

Data, Temporary

Data Block (DB)

Data Type

Data Type,
Complex

Glossary

Glossary-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Elementary data types are predefined data types complying with IEC 1131-3.
Examples: data type ”BOOL” defines a binary variable (bit); data type ”INT”
defines a 16-bit fixed-point variable.

User-defined data types are created by the user with the data type declaration.
They have their own names and can therefore be used more than once. A
user-defined data type can, for example, be used to create several data blocks
with the same structure (for example a controller).

The diagnostic buffer is a retentive area of memory within the CPU which
stores the diagnostic events in the order they occurred.

A diagnostic event causes an entry in the diagnostic buffer of the CPU. The
diagnostic events are divided into the following groups: faults on a module,
faults in the system wiring, system errors on the CPU itself, mode change
errors on the CPU, errors in the user program and user-defined diagnostic
events.

Distributed I/Os are modules located at some distance from the central rack
(for example analog and digital modules). The distributed I/Os are
characterized by the techniques used to install them. The aim is to reduce
wiring (and costs) by installing the modules close to the process.

DP standard indicates data exchange complying with EN 50170, previously
DIN E 19245, Part 3.

F

A formal parameter is a placeholder for the actual parameter in logic blocks
that can be assigned parameters. In FBs and FCs, the formal parameters are
declared by the user; in SFBs and SFCs, they already exist. When a block is
called, an actual parameter is assigned to the formal parameter so that the
called block works with the latest value. The formal parameters belong to the
local data of the block and are declared as input, output, and I/O parameters.

According to the International Electrotechnical Commission’s IEC 1131–3
standard, functions are logic blocks that do not have a ’memory’. A function
allows you to transfer parameters in the user program, which means they are
suitable for programming complex functions that are required frequently, for
example, calculations.
Important: Since there is no ’memory’, the calculated values must be
processed immediately following the FC call.

Data Type,
Elementary

Data Type,
User-Defined
(UDT)

Diagnostic Buffer

Diagnostic Event

Distributed
Peripheral I/Os
(DP)

DP Standard

Formal Parameter

Function (FC)

Glossary

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Glossary-5

According to the International Electrotechnical Commission’s IEC 1131-3
standard, function blocks are logic blocks that have a ’memory’. A function
block allows you to pass parameters in the user program, which means they
are suitable for programming complex functions that are required frequently,
for example, control systems, operating mode selection.
Important: Since a function block has a ’memory’ (instance data block), it is
possible to access their parameters at any point in the user program.

G

Global data communication is a procedure with which global data are
transferred between CPUs.

I

Instance means the call for a function block. If, for example, a function block
is called five times in an S7 user program, five instances exist. An instance
data block is assigned to every call.

An instance data block is used to save the formal parameters and the static
local data of function blocks. An instance DB can be assigned to a function
block call or to a call hierarchy of function blocks.

An instruction is part of a STEP 7 statement and specifies what the processor
should do.

If an interrupt or error occurs, the CPU enters the address of the point at
which the interrupt occurred and the current status bits and contents of the
accumulators in the interrupt stack (I stack) in the system memory. If more
than one interrupt has occurred, a multi-level I stack results. The I stack can
be read out with a programming device.

L

Local data are assigned to a logic block and that were declared in its
declaration table or variable declaration. Depending on the block, they
include: formal parameters, static data, temporary data.

Function Block
(FB)

Global Data
Communication

Instance

Instance Data
Block (DB)

Instruction

Interrupt Stack

Local Data

Glossary

Glossary-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

The local data stack (L stack) in the system memory of the CPU contains part
of the local data, known as the temporary data.

In SIMATIC S7, a logic block is a block that contains part of the STEP 7 user
program. The other type of block is a data block which contains only data.
The following list shows the types of logic blocks:

� Organization block (OB)

� Function block (FB)

� Function (FC)

� System function block (SFB)

� System function (SFC)

M

The memory reset function deletes the following memories in the CPU:

� Work memory

� Read/write area of the load memory

� System memory with the exception of the MPI parameters and the
diagnostic buffer

The multicomputing interrupt belongs the priority classes of the operating
system of an S7 CPU. On the S7-400, it is generated by a CPU after the CPU
has received an interrupt. The appropriate organization block is then called.

The multicomputing mode on the S7-400 is the simultaneous operation of
more than one (maximum four) CPUs in one rack.

The multipoint interface is the programming device interface in SIMATIC
S7. It allows simultaneous use of more than one programming device, text
display, or operator panel with one or more CPUs. The stations on the MPI
are interconnected by a bus system.

N

A network connects network nodes via a cable and allows communication
between the nodes.

Local Data Stack

Logic Block

Memory Reset
(MRES)

Multicomputing
Interrupt

Multicomputing
Mode

Multipoint
Interface

Network

Glossary

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Glossary-7

A node address is used to access a device (for example a programming
device) or a programmable module (for example a CPU) in a network (for
example MPI, PROFIBUS).

O

Organization blocks form the interface between the CPU operating system
and the user program. The sequence in which the user program should be
processed is laid down in the organization blocks.

P

A parameter is a variable of an S7 logic block (actual parameter, formal
parameter) or a variable for setting the behavior of a module. Every
configurable module has a basic parameter setting when it is supplied from
the factory, but this can be changed using STEP 7.

The peripheral bus (P bus) is part of the backplane bus in the programmable
logic controller. It is optimized for the fast exchange of signals between the
CPU(s) and the signal modules. User data (for example digital input signals
of a signal module) and system data (for example default parameter records
of a signal module) are transferred on this bus.

The operating system of an S7 CPU provides a maximum of 28 priority
classes (or program execution levels), to which various organization blocks
(OBs) are assigned. The priority classes determine which OBs can interrupt
other OBs. If a priority class includes more than one OB, these do not
interrupt each other but are executed in the order in which they are called.

The signal states of the digital input and output modules are stored in the
CPU in a process image. There is a process-image input table (PII) and a
process-image output table (PIQ).

PROFIBUS stands for ”Process Field Bus” and is an open communications
standard for networking field devices (for example programmable
controllers, drives, actuators, sensors).

A programmable (logic) controller consists of a central rack, a CPU and
various input and output modules.

Node Address

Organization Block
(OB)

Parameter

Peripheral Bus
(P Bus)

Priority Class

Process Image

PROFIBUS

Programmable
Controller (PLC)

Glossary

Glossary-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

A personal computer with a special compact design, suitable for industrial
conditions. A programming device is completely equipped for programming
the SIMATIC programmable logic controllers.

A project is a container for all objects in an automation task, independent of
the number of stations, modules, and how they are connected in a network.

R

When a CPU starts up (for example, when the mode selector is moved from
STOP to RUN or when the power is turned on), before cyclic program
processing starts (OB1), either the organization block OB100 (complete
restart) or the organization block OB101 (restart; only in the S7-400) is
processed first. In a restart the process-image input table is read in and the
STEP 7 user program processing is restarted at the point where it was
interrupted by the last stop (STOP, power off).

S

An S7 program is a container for blocks, source files, and charts for S7
programmable modules.

Shared data are data which can be accessed from any logic block (function
(FC), function block (FB), organization block (OB)). These are bit memory
(M), inputs (I), outputs (Q), timers (T), counters (C), and elements of data
blocks (DB). You can access shared data either absolutely or symbolically.

SINEC L2-DP is the Siemens product name for the PROFIBUS DP.

Start events are defined events such as errors or interrupts and cause the
operating system to start the corresponding organization block.

The CPU goes through the STARTUP mode during the transition from the
STOP mode to the RUN mode. It can be set using the mode selector, or
following power-on, or by an operation on the programming device.

A distinction is made between a complete restart and a restart. In the S7-300,
a complete restart is executed. In the S7-400, either a complete restart or a
restart is executed, depending on the position of the mode selector.

Programming
Device (PG)

Project

Restart

S7 Program

Shared Data

SINEC L2-DP

Start Event

STARTUP Mode

Glossary

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Glossary-9

A symbol is a name defined by the user, taking syntax rules into
consideration. This name can be used in programming and in operating and
monitoring once you have defined it (for example, as a variable, a data type,
a jump label, or a block).
Example: Address: I 5.0, Data Type: BOOL, Symbol: Emer_Off_Switch

A table used to assign symbols (or symbolic names) to addresses for shared
data and blocks.
Examples: Emer_Off (Symbol), I 1.7 (Address)

Controller (Symbol), SFB24 (Block)

System errors are errors which can occur within a programmable logic
controller (and are not related to the process). Some examples of system
errors are program errors in the CPU and defects on modules.

A system function (SFC) is a function integrated in the CPU operating
system which can be called in the user program when required. Its associated
instance data block is found in the work memory.

A system function block (SFB) is a function block integrated in the CPU
operating system which can be called in the STEP 7 user program when
required.

The system memory is integrated in the CPU and executed in the form of
RAM. The address areas (timers, counters, bit memory, etc.) and data areas
required internally by the operating system (for example, backup for
communication) are stored in the system memory.

The system status list SZL describes the current status of a programmable
logic controller: it provides information about the configuration, the current
parameter assignment, the current statuses and sequences on the CPU, and
about the modules assigned to the CPU. The data of the system status list can
only be read and cannot be modified. It is a virtual list that is only created
when requested.

T

Timers are an area in the system memory of the CPU. The contents of these
timers is updated by the operating system asynchronously to the user
program. You can use STEP 7 instructions to define the exact function of the
timer (for example, on-delay timer) and start processing it (Start).

Symbol

Symbol Table

System Error

System Function
(SFC)

System Function
Block (SFB)

System Memory

System Status List
(SZL)

Timer (T)

Glossary

Glossary-10
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

U

The user program contains all the statements and declarations and the data
required for signal processing to control a plant or a process. The program is
linked to a programmable module (for example, CPU, FM) and can be
structured in the form of smaller units (blocks).

V

A variable defines an item of data with variable content which can be used in
the STEP 7 user program. A variable consists of an address (for example,
M 3.1) and a data type (for example, BOOL), and can be identified by means
of a symbolic name (for example, BELT_ON).

The variable declaration includes the specification of a symbolic name, a
data type (and possibly an initialization value), an address, and comment.

The local data of a logic block are declared in the variable declaration table
when the program is created using incremental input.

The variable table is used to collect together the variables that you want to
monitor and modify and set their relevant formats.

User Program

Variable

Variable
Declaration

Variable
Declaration Table

Variable Table
(VAT)

Glossary

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Index-1

Index

Symbols
“I_ABORT”, 7-8
“I_GET”, 7-8
“I_PUT”, 7-8
“X_ABORT”, 7-8
“X_GET”, 7-8
“X_RCV”, 7-8
“X_SEND”/, 7-8

�

Absolute addressing, 5-5
ACT_TINT, 4-3, 4-4
Actual parameter, 2-5, 2-11
Address area, multicomputing, 10-3
Address areas, description, 5-4–5-6
Addresses, 2-3
Addressing

absolute, 5-5
communication partner, 7-9
S5 modules, 6-5
symbolic, 5-5
types of, 5-5

Addressing modules, 6-2
ANY, C-5
ANY, parameters, description and use, C-15
ARRAY, C-4
ARRAY data type

description, C-7
number of nested levels, C-6

Assigning memory
for an FB, 2-6
in the L stack, 3-13

Asynchronous error, using OBs to react to er-
rors, 3-10–3-12

Asynchronous errors, OB 81, 11-12

�

B stack
data stored in, 2-18
nested calls, 2-18–2-21

Backup battery
retentive memory with battery, 5-10
retentive memory without battery, 5-10

Bit memory, retentive, 5-8
BLKMOV, 5-7
BLOCK, parameter type, C-5
Block calls, 2-4
Block variables, 2-5
BLOCK_DB, C-5
BLOCK_FB, C-5
BLOCK_FC, C-5
BLOCK_SDB, C-5
Blocks, 2-3
BOOL, range, C-2
BRCV, 7-3
BSEND, 7-3
Byte, range, C-2

�

CALL, situations in which data is overwritten,
2-21

Call hierarchy, 2-4
CAN_TINT, 4-3
CFC programming language, 2-8
Chain, multicomputing, 10-3
Changing modes, 9-3
CHAR, range, C-3
Clock

assigning parameters, 8-4
synchronizing, 8-4

Index-2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Clock functions, 8-4
Clock memory byte, 8-11
Communication

extending the cycle, 8-7
heterogeneous, 7-2
homogeneous, 7-2
one way, 7-4
two way, 7-4
types, 7-2

Communication connections, 7-6
Communication error OB, 11-24
Communication options, 7-1
Communication partner, 7-5

addressing, 7-7, 7-9
connection, 7-8

Communication SFBs, sample program, B-1
Communication SFCs, for non-configured con-

nections, 7-8
Complete restart, 9-6

aborting, 9-10
automatic, 9-6
automatic, no battery backup, 9-7
manual, 9-6

Configurable modules, 8-2
Configuration diagram, for the example of an

industrial blending process, 1-11
Configuring, multicomputing, 10-4
Connection

one way/two way, 7-6
to communication partner, 7-8

Connection ID, 7-6, 7-7
Connections, configuring, 7-6
Consistency check, multicomputing, 10-10
CONTROL, 7-3
COUNTER, C-5

parameter type, C-5
Counter (C), memory area, retentive, 5-8
CPU (central processing unit), modes, 9-2–9-4
CPU hardware fault OB, 11-21
CPU mode, 9-2

relationship between modes, 9-2–9-4
CREAT_DB, 5-6
CRST/WRST, 9-6
CTRL_RTM, 8-4
Cycle, 2-9, 3-5
Cycle monitoring time, 8-6
Cycle time, 3-6, 8-6
Cyclic interrupt, 4-6
Cyclic program execution, 2-9

�

Data block (DB), 2-3
instance data blocks, 2-12, 2-15
retentive, 5-8
shared, 2-17
situations in which data is overwritten, 2-21
structure, 2-17

Data exchange, 7-1
in various modes, 9-12

Data record
accessing, 6-5, 8-3
reading, 6-4
writing, 6-4

Data type, user-defined, C-4
Data types, 2-6

ARRAY, C-4
BOOL, C-2
BYTE, C-2
CHAR, C-3
complex, C-4
DATE, C-3
DATE_AND_TIME, C-4
description, C-2–C-4
Double word (DWORD), C-2
elementary, C-2
FB, SFB, 2-13, C-4
integer (16 bits) (INT), C-2
integer (32 bits) (DINT), C-2
parameter types, ANY, parameters, C-15
real number (REAL), C-3
S5 TIME, C-3
situations in which data is overwritten, 2-21
STRING, C-4
STRUCT, C-4
TIME, C-3
TIME OF DAY, C-3
WORD, C-2

DATE_AND_TIME, C-4
DB, 2-17, Glossary-3, Glossary-5
Debugging, user program, 9-14
Declaration types, 2-5
Declaring local variables

FB for the blending process example, A-9
OB for the blending process example, A-14

Declaring parameters, FC for the blending pro-
cess example, A-12

Defective, CPU mode, 9-3
Delay, start events, 3-11

Index

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Index-3

Describing the areas and tasks, for the example
of an industrial blending process, 1-5–1-7

Description of the operator station, for the ex-
ample of an industrial blending process, 1-10

Description of the safety requirements, for the
example of an industrial blending process,
1-9

Design methods, designing a structured pro-
gram, A-4–A-14

Designing a control program, 1-1
Detectable errors, 11-10
Diagnostic buffer, 11-6

definition, 11-7
reading out, 11-3

Diagnostic data on modules, 11-6
Diagnostic event, 11-3
Diagnostic functions, 11-2
Diagnostic interrupt OB, 11-19, 11-21
Diagnostic message

sending to a station, 11-8
writing your own, 11-8

Diagnostic status data, 11-6
Diagnostics, 11-2
DIS_AIRT, 3-11
DIS_IRT, 3-11
Distributed peripheral I/Os, 6-6
Dividing a process into tasks, for the example of

an industrial blending process, 1-3–1-5
DMSK_FLT, 3-11
DP, 6-6, Glossary-4
DP standard slaves, 6-7
DPNRM_DG, 6-7
DPRD_DAT, 6-7
DPWR_DAT, 6-7
DWORD, range, C-2

�

Elementary data types, description, C-2
Eliminating errors, sample programs, 11-11
EN_AIRT, 3-11
EN_IRT, 3-11
Error detection

OB types, OB 81, 11-12
sample programs, replacement values,

11-14–11-16
Error ID, using error OBs to react to errors,

3-10–3-12

Error OB, 11-10
OB types
OB121 and OB122, 3-11
OB80 to OB87, 3-11

using error OBs to react to events, 3-10–3-12
Errors, in the multicomputing mode, 10-10

�

FB, 2-12, C-4, Glossary-5
FC, 2-11, Glossary-4
Formal parameter, 2-5
Function (FC), 2-3, 2-11

application, 2-11
creating a sample FC for the blending pro-

cess example, A-11–A-13
Function block (FB), 2-3, 2-12

actual parameters, 2-13
application, 2-12
assigning memory, 2-6
creating a sample FB for the blending pro-

cess example, A-7–A-10

�

GET, 7-3
GRAPH, 2-8

�

Hardware interrupt, 4-8
HiGraph, 2-8
HOLD, 9-13

CPU mode, 9-2

�

I stack
used by system memory, 3-12
writing to, 3-12

I/O access error OB, 11-26
I/Os, distributed, 6-6
In/out parameters, order for declaring parame-

ters, 2-6
Indirect parameter assignment, 8-2
Information overview, iv

Index

Index-4
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Input parameters, order for declaring parame-
ters, 2-6

Insert/remove module interrupt OB, 11-20
Instance, 2-15
Instance data block, 2-15, 7-7

assigning memory for an FB, 2-6
creating multiple instances for an FB, 2-12
retentive, 5-8
situations in which data is overwritten, 2-21

Instruction set, 2-3, 2-7
Instructions, 2-7
Integer (16 bits) (INT), range, C-2
Integer (32 bits) (DINT), range, C-2
Interrupt, types, 3-2
Interrupt assignment, multicomputing, 10-4
Interrupt OB

assigning parameters, 4-2, 4-4
deselecting, 8-12

Interrupt OBs, uses, 4-2
Interrupt stack, 3-12
Interrupt-driven program execution, 2-9
Interruption time limit, 9-10

�

Job identifier R_ID, 7-7

�

L stack
assigning memory to local variables, 3-13
further uses apart from storing variables,

2-19
L stack overflow, 3-13
processing data in a nested call, 2-18–2-21
storing temporary variables, 2-12

L stack overflow, 3-13
LAD, 2-7
Linear programming, 2-9
Load memory, 5-6

unlinked DBs, 5-7
Loading, the user program, 5-6
Loading the program, 5-3
Local data, 2-19

changing the amount of, 8-12
Local data stack, 5-13
Local variables (VAR), order for declaring pa-

rameters, 2-6
Logic blocks, defining, example, A-4

�

Masking, start events, 3-11
Maximum cycle time, 8-6
Memory areas, 5-2–5-7

address areas, 5-4
load memory, 5-2–5-6
retentive memory, 5-8–5-10
special features of the S7-300, 5-3
system memory, 5-2
work memory, 5-2

Memory card, 5-6
Memory reset, 9-5
Message point (MP), 10-8
Minimum cycle time, 8-6
Mode changes, 9-2, 9-3
Mode transitions, in the multicomputing mode,

10-9
Modes, priority, 9-4
Module

assigning parameters, 8-2
removing and inserting, 11-20

Module parameters, 8-2
transferring with SFCs, 8-3
transferring with STEP 7, 8-2

Module start address, 6-3
Monitoring times, 8-5
MPI, Glossary-6
MPI parameters, 8-9
MSK_FLT, 3-11
Multicomputing, 10-6

address area, 10-3
configuring, 10-4
consistency check, 10-10
errors, 10-10
examples of applications, 10-2
interrupt assignment, 10-4
parameter assignment, 10-4
programming, 10-6
special features, 10-3
synchronizing, 10-8

Multicomputing interrupt, 10-6
Multiple instance, 2-13, 2-15

�

Nested logic block calls, effects on B stack and
L stack, 2-18–2-21

Nesting depth, 2-4

Index

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Index-5

Non-volatile RAM, 5-8
NVRAM, 5-8

�

OB, 2-9, Glossary-7
OB60, 10-6
Operating system, tasks, 2-2
Organization block

creating an OB for the blending process ex-
ample, A-15–A-18

definition, 2-9
priority classes, 3-2
types, 3-2

Organization block (OB), background OB (OB
90), 3-7

Organization blocks, 2-3
error detection, OB 122, replacement values,

11-14–11-16
reaction to errors, 3-10–3-12
start information, 3-3

Output parameter, RET_VAL, 11-9
Output parameters, order for declaring parame-

ters, 2-6

�

Parameter assignment
indirect, 8-2
with SFCs, 8-3
with STEP 7, 8-2

Parameter types
ANY, C-5, C-15
BLOCK_DB, C-5
BLOCK_FB, C-5
BLOCK_FC, C-5
BLOCK_SDB, C-5
COUNTER, C-5
POINTER, C-5
TIMER, C-5

PARM_MOD, 6-5, 8-3
Peripheral data area, 6-4
Peripheral I/Os, address area, 6-2
PG, Glossary-8
Phase shift, 4-6
Planning an automation system, 1-2–1-4
POINTER, C-5

parameter type, C-5
Pointer format, C-5
Power off, CPU mode, 9-3

Power supply error OB, 11-18
Preprogrammed blocks, 2-10
Priority, changing, 8-12
Priority class error OB, 11-22
Process, subdividing, 1-3, A-2
Process image, 3-6, 5-11

clearing, 8-5
input table, 3-5
output table, 3-5
sections, 5-12
updating, 5-11, 8-7

Program execution
cyclic, 2-9
interrupt-driven, 2-9, 3-8, 4-2

Programming
cycle, 3-5
designing a structured program, A-4–A-14
example of an FB, A-9
example of an FC, A-12
example of an OB, A-15
transferring parameters, 2-13
using data blocks, 2-12

Programming error OB, 11-25
Programming example, FC for the blending pro-

cess example, A-11–A-13
Programming languages, 2-7
PUT, 7-3

�

QRY_TINT, 4-3

�

R_ID, 7-7
Rack failure OB, 11-23
RDSYSST, 11-3, 11-4, 11-7
READ_CLK, 8-4
READ_RTM, 8-4
Real number

data type, C-3
range, C-3

Remaining cycle, 9-7
Removing and inserting a module, 11-20
Replacement values, using SFC44 (RPL_VAL),

11-14–11-16
Restart, 9-7

aborting, 9-10
automatic, 9-7
manual, 9-7

Index

Index-6
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

RESUME, 7-3
Retentive memory

after power outage, 9-8
configuring, 8-10
on S7-300 CPUs, 5-8–5-10
on S7-400 CPUs, 5-10–5-12

RPL_VAL, 11-14
RUN, 9-12

CPU activities, 9-11
CPU mode, 9-2–9-4

Run-time error, using OBs to react to errors,
3-10–3-12

Run-time meter, 8-4

�

S5 TIME, range, C-3
Safety requirements, 1-9

for the example of an industrial blending
process, 1-9

Safety warning, L stack overflow, 3-13
Sample program

data exchange between two S7-CPUs, B-1
FB for the example of an industrial blending

program, A-7–A-10
OB for the blending process example,

A-15–A-18
Sample programs

example of an industrial blending process
configuration diagram, 1-11
describing the areas and tasks, 1-5–1-7
description of the individual tasks and areas

creating an I/O diagram, 1-7–1-9
description of the functions, 1-5–1-7

description of the operator station, 1-10
dividing the process into tasks, 1-3–1-5
functional areas of the equipment, 1-4
safety requirements, 1-9

industrial blending process, A-2
inserting replacement values, 11-14–11-16
reacting to battery faults, 11-11
replacement values, 11-14–11-16

SCL, 2-8
Self-test in complete restart, 8-5
Set/actual module configuration, 9-10
SET_CLK, 4-4, 8-4
SET_RTM, 8-4
SET_TINT, 4-3
SFB, 2-10, 7-2, C-4
SFB12 BSEND, 7-3
SFB13 BRCV, 7-3
SFB14 GET, 7-3

SFB15 PUT, 7-3
SFB19 START, 7-3
SFB20 STOP, 3-6, 7-3
SFB21 RESUME, 7-3
SFB22 STATUS, 7-3
SFB23 USTATUS, 7-3
SFB8 USEND, 7-3
SFB9 URCV, 7-3
SFC, 2-10
SFC 36 MSK_FLT, 3-11
SFC_RTCB, 8-4
SFC0 SET_CLK, 4-4, 8-4
SFC1 READ_CLK, 8-4
SFC13 DPNRM_DG, 6-7
SFC14 DPRD_DAT, 6-7
SFC15 DPWR_DAT, 6-7
SFC2 SET_RTM, 8-4
SFC20 BLKMOV, 5-7
SFC22 CREAT_DB, 5-6
SFC26 UPDAT_PI, 5-12, 8-7
SFC27 UPDAT_PO, 5-12, 8-7
SFC28 SET_TINT, 4-3
SFC29 CAN_TINT, 4-3
SFC3 CTRL_RTM, 8-4
SFC30 ACT_TINT, 4-3, 4-4
SFC31 QRY_TINT, 4-3
SFC32 SRT_DINT, 4-5
SFC35, 10-6
SFC37 DMSK_FLT, 3-11
SFC39 DIS_IRT, 3-11
SFC4 READ_RTM, 8-4
SFC40 EN_IRT, 3-11
SFC41 DIS_AIRT, 3-11
SFC42 EN_AIRT, 3-11
SFC44 RPL_VAL, 11-14
SFC46 STP, 3-6
SFC48 SFC_RTCB, 8-4
SFC51 RDSYSST, 11-3, 11-4, 11-7
SFC52 WR_USMSG, 11-8
SFC55 WR_PARM, 6-5, 8-3
SFC56 WR_DPARM, 6-5, 8-3
SFC57 PARM_MOD, 6-5, 8-3
SFC62 CONTROL, 7-3
SFC65 ”X_SEND”/, 7-8
SFC66 “X_RCV”, 7-8
SFC67 “X_GET”, 7-8
SFC69 “X_ABORT”, 7-8
SFC72 “I_GET”, 7-8
SFC73 “I_PUT”, 7-8
SFC74 “I_ABORT”, 7-8
Situations in which data is overwritten, 2-21
SRT_DINT, 4-5

Index

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 Index-7

START, 7-3
Start address, 6-3
Start event, for error OBs, 3-10
Start events

delaying, 3-11
for cyclic interrupts, 4-6
for hardware interrupts, 4-8
for time-delay interrupts, 4-5
for time-of-day interrupts, 4-3
masking, 3-11

STARTUP, 9-6
aborting, 9-10
CPU activities, 9-9, 9-11
CPU mode, 9-2–9-4

Startup behavior, 8-5
Startup comparison, 10-3
Startup OB, 3-4
Startup program, 3-4
Startup type check, 10-9
Statement List (STL), absolute addressing, situ-

ations in which data is overwritten, 2-21
STATUS, 7-3
STEP 7

configuring retentive memory areas, 5-10
error OBs, reactions to errors, 3-10–3-12
function, 2-7
programming languages, 2-7
test options, 9-14

STL, 2-7
STOP, 7-3, 9-5

CPU mode, 9-2–9-4
Storing data in the L stack, 2-19
STRING, C-4
STRUCT, C-4
STRUCT data type

description, C-10
number of nested levels, C-6

Structured data types, C-4, C-6
array, C-7
nesting structures and arrays, C-6

structure, C-10
nesting structures and arrays, C-6

Structured program
advantages, 2-3
designing, A-4–A-14

Structured programming, 2-9
Symbolic addressing, 5-5

in the sample program, A-5
Synchronization

Multicomputing, 10-8
using message points, 10-8
using wait points, 10-8

Synchronization points, of the CPU, 10-8

Synchronous error, using OBs to react to errors,
3-10–3-12

System architecture
CPU mode, 9-2–9-4
cycle, 3-5

System data, 11-5
System data block, 8-2
System diagnostics, extending, 11-8
System error, 11-2, Glossary-9
System function blocks, 2-3, 2-10

types, 2-10
System functions, 2-3, 2-10

types, 2-10
System memory, 5-2–5-6
System parameters, 8-1
System status list, 11-4

content, 11-4
reading out, 11-4

SZL, 11-4, Glossary-9

�

Temporary variable (TEMP), order for declaring
parameters, 2-6

TIME, range, C-3
Time

reading, 8-4
setting, 8-4

Time error OB, 11-17
Time format, 8-4
TIME OF DAY, range, C-3
Time of day, changing, 4-4
Time-delay interrupts, 4-5
Time-of-day interrupt, 4-3
TIMER, C-5

parameter type, C-5
Timer (T), 8-11

memory area, retentive, 5-8
Transferring parameters

designing parameters for a structured pro-
gram, A-8

parameter types, C-5
Sample FB for the blending process exam-

ple, A-7–A-10
saving the transferred values, 2-12
situations in which data is overwritten, 2-21

�

UDT, C-4, Glossary-4
Unmasking, start events, 3-11

Index

Index-8
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Unsynchronized operation, in segmented racks,
10-2

UPDAT_PI, 5-12, 8-7
UPDAT_PO, 5-12, 8-7
URCV, 7-3
USEND, 7-3
User data, 6-4, 6-6
User program

debugging, 9-14
elements, 2-3
in the CPU memory, 5-6
loading, 5-6
tasks, 2-2

User-defined data types, description, C-12
USTATUS, 7-3

�

Variable declaration table
FB for the blending process example, A-9
FC for the blending process example, A-12
for OB 81, 11-12
OB for the blending process example, A-14
order for declaring parameters, 2-6

VAT, Glossary-10

�

Wait point (WP), 10-8
Warning, L stack overflow, 3-13
WORD, range, C-2
Work memory, 5-2, 5-6
WR_DPARM, 6-5, 8-3
WR_PARM, 6-5, 8-3
WR_USMSG, 11-8

Index

System Software for S7-300 and S7-400 Program Design
C79000-G7076-C506-01 1✄

Siemens AG

AUT E 146

Östliche Rheinbrückenstr. 50

D-76181 Karlsruhe

Federal Republic of Germany

Please check any industry that applies to you:

❒ Automotive

❒ Chemical

❒ Electrical Machinery

❒ Food

❒ Instrument and Control

❒ Nonelectrical Machinery

❒ Petrochemical

❒ Pharmaceutical

❒ Plastic

❒ Pulp and Paper

❒ Textiles

❒ Transportation

❒ Other _ _ _ _ _ _ _ _ _ _ _

From:

Your Name:_ _

Your Title: _

Company Name: _

Street: _

City, Zip Code_ _

Country: _

Phone: _

2
System Software for S7-300 and S7-400 Program Design

C79000-G7076-C506-01

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics/tables:

	Title
	Preface
	Contents
	1 How to Design Control Programs
	1.1 Planning the Automation Project
	1.2 Dividing the Process into Individual Tasks
	1.3 Describing the Individual Tasks and Areas
	1.4 Establishing the Safety Requirements
	1.5 Describing the Required Operator Displays and Controls
	1.6 Creating a Configuration Diagram

	2 Structuring the User Program
	2.1 The Programs in a CPU
	2.2 Elements of the User Program
	2.3 Call Hierarchy of the Blocks
	2.4 Variables of a Block
	2.5 Range of Instructions of the S7 CPUs
	2.6 Organization Blocks (OB) and Program Structure
	2.7 System Function Blocks (SFB) and System Functions (SFC)
	2.8 Functions (FC)
	2.9 Function Blocks (FB)
	2.10 Instance Data Blocks
	2.11 Shared Data Blocks (DB)
	2.12 Saving the Data of an Interrupted Block
	2.13 Avoiding Errors when Calling Blocks

	3 Organization Blocks and Executing the Program
	3.1 Types of Organization Block
	3.2 Organization Blocks for the Startup Program
	3.3 Organization Block for Cyclic Program Execution
	3.4 Organization Block for Background Program Execution
	3.5 Organization Blocks for Interrupt-Driven Program Execution
	3.6 Organization Blocks for Handling Errors
	3.7 Interrupting Program Execution
	3.8 Managing Local Data (L Stack)

	4 Handling Interrupts
	4.1 Using Interrupt OBs
	4.2 Time-of-Day Interrupts (OB10 to OB17)
	4.3 Time-Delay Interrupts (OB20 to OB23)
	4.4 Cyclic Interrupts (OB30 to OB38)
	4.5 Hardware Interrupts (OB40 to OB47)

	5 Memory Areas of S7 CPUs
	5.1 Memory Areas of the CPU
	5.2 Absolute and Symbolic Addressing
	5.3 Storing Programs on the CPU
	5.4 Retentive Memory Areas on S7-300 CPUs
	5.5 Retentive Memory Areas on S7-400 CPUs
	5.6 Process Image Input/Output Tables
	5.7 Local Data Stack

	6 Addressing Peripheral I/Os
	6.1 Access to Process Data
	6.2 Access to the Peripheral Data Area
	6.3 Special Features of Distributed Peripheral I/Os (DP)

	7 Data Exchange Between Programmable Modules
	7.1 Types of Communication
	7.2 Data Exchange with SFBs for Configured Connections
	7.3 Configuring a Communication Connection Between Partners
	7.4 Working with Communication SFBs for Configured Connections
	7.5 Data Exchange with Communication SFCs for Non-Configured Connections

	8 Setting System Parameters
	8.1 Changing the Behavior and Properties of Modules
	8.2 Using the Clock Functions
	8.3 Specifying the Startup Behavior
	8.4 Settings for the Cycle
	8.5 Specifying the MPI Parameters
	8.6 Specifying Retentive Memory Areas
	8.7 Using Clock Memory and Timers
	8.8 Changing the Priority Classes and Amount of Local Data

	9 Operating Modes and Mode Changes
	9.1 Operating Modes and Mode Changes
	9.2 STOP Mode
	9.3 STARTUP Mode
	9.4 RUN Mode
	9.5 HOLD Mode
	9.6 Testing the User Program

	10 Multicomputing
	10.1 Overview
	10.2 Configuring Modules
	10.3 Programming the CPUs
	10.4 Synchronizing the CPUs
	10.5 Dealing with Errors

	11 Diagnostics and Troubleshooting
	11.1 Diagnostic Information
	11.2 System Status List SZL
	11.3 Diagnostic Buffer
	11.4 Sending Your Own Diagnostic Messages
	11.5 Evaluating the Output Parameter RET_VAL
	11.6 Error OBs as a Reaction to Detected Errors
	11.7 Using “Replacement Values” When an Error is Detected
	11.8 Time Error OB (OB80)
	11.9 Power Supply Error OB (OB81)
	11.10 Diagnostic Interrupt OB (OB82)
	11.11 Insert/Remove Module Interrupt OB (OB83)
	11.12 CPU Hardware Fault OB (OB84)
	11.13 Priority Class Error OB (OB85)
	11.14 Rack Failure OB (OB86)
	11.15 Communication Error OB (OB87)
	11.16 Programming Error OB (OB121)
	11.17 I/O Access Error OB (OB122)

	A Sample Program for an Industrial Blending Process
	A.1 Example of an Industrial Blending Process
	A.2 Defining Logic Blocks
	A.3 Assigning Symbolic Names
	A.4 Creating the FB for the Motor
	A.5 Creating the FC for the Valves
	A.6 Creating OB1

	B Sample Program for Communication SFBs for Configured Connections
	B.1 Overview
	B.2 Sample Program on the Sending CPU
	B.3 Sample Program on the Receiving CPU
	B.4 Using the Sample Program
	B.5 Call Hierarchy of the Blocks in the Sample Program

	C Data and Parameter Types
	C.1 Data Types
	C.2 Using Complex Data Types
	C.3 Using Arrays to Access Data
	C.4 Using Structures to Access Data
	C.5 Using User-Defined Data Types to Access Data
	C.6 Using the ANY Parameter Type
	C.7 Assigning Data Types to Local Data of Logic Blocks
	C.8 Restrictions When Transferring Parameters

	D References
	Glossary
	A
	B
	C
	D
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Customer reply slip

