
Important Notes, Contents

Introduction to STEP 7

The SIMATIC Manager

Programming with Symbols

Creating a Program in OB1

Creating a Program with
Function Blocks and
Data Blocks

Configuring the Central Rack

Downloading and Debugging
the Program

Programming a Function

Programming a Shared
Data Block

Programming a Multiple
Instance

Configuring the Distributed I/O

Overview of the Sample
Projects for the
Getting Started Manual
Index

SIMATIC S7

Working with STEP 7 V5.0

Getting Started

This manual is part of the documentation
package with the order number :
6ES7 810-4CA04-8BA0

03/99

C79000-G7076-C560

Release 02

1

2

3

4

5

6

7

8

9

10

11

A

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as

to protect the product and connected equipment. These notices are highlighted in the manual by a war-

ning triangle and are marked as follows according to the level of danger:

!
Danger
indicates that death, severe personal injury or substantial property damage will result if proper pre-
cautions are not taken.

! Warning
indicates that death, severe personal injury or substantial property damage can result if proper pre-
cautions are not taken.

! Caution
indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note
draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel
Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are

defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and

systems in accordance with established safety practices and standards.

Correct Usage

Note the following:

! Warning
This device and its components may only be used for the applications described in the catalog or the

technical descriptions, and only in connection with devices or components from other manufacturers

which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner's rights

may be violated if they are used by third parties for their own purposes.

Copyright © Siemens AG 1998 All ri ghts reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority. Offen-
ders will be liable for damages. All rights, including rights created
by patent grant or registration of a utility model or design, are
reserved.

Siemens AG
Bereich Automatisierungs- und Antriebstechnik
Geschaeftsgebiet Industrie-Automatisierungssysteme
Postfach 4848, D- 90327 Nuernberg

Disc laimer of L iabil ity

We have che#ked the contents of this manual for agreement with
the hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

©Siemens AG 1998
Technical data subject to change.

Siemens Aktiengesellschaft C79000-G7076-C560

STEP 7 Getting Started
C79000-G7076-C560-02 iii

Welcome to STEP 7...

...the SIMATIC standard software for creating programmable logic control
programs in Ladder Logic, Function Block Diagram, or Statement List for SIMATIC
S7-300/400 stations.

About This Getting Started Manual

In this manual, you will get to know the basics of SIMATIC STEP 7. We will show
you the most important screen dialog boxes and the procedures to follow using
practical exercises, which are structured so that you can start with almost any
chapter.

Each section is split into two parts: a descriptive part, marked in gray, and a
process-oriented part, marked in green. The instructions start with an arrow in the
green margin and may be spread out over several pages, finishing in a full stop
and a box containing related topics.

Previous experience of working with the mouse, window handling, pull-down
menus, etc. would be useful, and you should preferably be familiar with the basic
principles of programmable logic control.

The STEP 7 training courses provide you with in-depth knowledge above and
beyond the contents of this Getting Started manual, teaching you how entire
automation solutions can be created with STEP 7.

Requirements for Working with the Getting Started Manual

In order to carry out the practical exercises for STEP 7 in this Getting Started
manual, you require the following:

• A Siemens programming device or a PC

• The STEP 7 software package and the authorization diskette

• A SIMATIC S7-300 or S7-400 programmable controller
(for Chapter 7 "Downloading and Debugging the Program").

Additional Documentation on STEP 7

• STEP 7 Basic Information

• STEP 7 Reference Information

After you have installed STEP 7, you will find the electronic manuals in the Start
menu under Simatic > S7 Manuals or alternatively, you can order them from any
Siemens sales center. All of the information in the manuals can be called up in
STEP 7 from the online help.

Have fun and good luck!

SIEMENS AG

Important Notes

STEP 7 Getting Started
iv C79000-G7076-C560-02

STEP 7 Getting Started
C79000-G7076-C560-02 v

Contents

1 Introduction to STEP 7

1.1

1.2

1.3

1.4

What You Will Learn

Combining Hardware and Software

Basic Procedure Using STEP 7

Installing STEP 7

1-1

1-3

1-4

1-5

2 The SIMATIC Manager

2.1

2.2

Starting the SIMATIC Manager and Creating a Project

The Project Structure in the SIMATIC Manager
and How to Call the Online Help

2-1

2-5

3 Programming with Symbols

3.1

3.2

Absolute Addresses

Symbolic Programming

3-1

3-2

4 Creating a Program in OB1

4.1

4.2

4.3

4.4

Opening the LAD/STL/FBD Program Window

Programming OB1 in Ladder Logic

Programming OB1 in Statement List

Programming OB1 in Function Block Diagram

4-1

4-4

4-8

4-11

5 Creating a Program with Function Blocks and Data Blocks

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Creating and Opening Function Blocks (FB)

Programming FB1 in Ladder Logic

Programming FB1 in Statement List

Programming FB1 in Function Block Diagram

Generating Instance Data Blocks and Changing Actual Values

Programming a Block Call in Ladder Logic

Programming a Block Call in Statement List

Programming a Block Call in Function Block Diagram

5-1

5-3

5-6

5-8

5-11

5-13

5-16

5-18

In Chapters 3 to 5, you create a
simple program.

Contents

STEP 7 Getting Started
vi C79000-G7076-C560-02

6 Configuring the Central Rack

6.1 Configuring Hardware 6-1

7 Downloading and Debugging the Program

7.1

7.2

7.3

7.4

7.5

Establishing an Online Connection

Downloading the Program to the Programmable Controller

Testing the Program with Program Status

Testing the Program with the Variable Table

Evaluating the Diagnostic Buffer

7-1

7-3

7-6

7-8

7-12

8 Programming a Function

8.1

8.2

8.3

Creating and Opening Functions (FC)

Programming Functions

Calling the Function in OB1

8-1

8-3

8-6

9 Programming a Shared Data Block

9.1 Creating and Opening Shared Data Blocks 9-1

10 Programming a Multiple Instance

10.1

10.2

10.3

10.4

Creating and Opening a Higher-Level Function Block

Programming FB10

Generating DB10 and Adapting the Actual Value

Calling FB10 in OB1

10-1

10-3

10-6

10-8

11 Configuring the Distributed I/O

11.1 Configuring the Distributed I/O with PROFIBUS DP 11-1

Appendix A A-1

Overview of the Sample Projects for the Getting Started Manual

In Chapters 8 to 11, you can
extend your knowledge to include
new functions.

In Chapters 6 and 7, you
configure the hardware and test
your program.

STEP 7 Getting Started 1-1
C79000-G7076-C560-02

1 Introduction to STEP 7

1.1 What You Will Learn

Using practical exercises, we will show you how easy it is to program in Ladder
Logic, Statement List, or Function Block Diagram with STEP 7.

Detailed instructions in the individual chapters will show you step-by-step the
many ways in which you can use STEP 7.

Creating a Program with Binary Logic

In Chapters 2 to 7, you will create a program with binary logic. Using the
programmed logic operations, you will address the inputs and outputs of your CPU
(if present).

The programming examples in the Getting Started manual are based, among other
things, on three fundamental binary logic operations.

The first binary logic operation, which you will program later on, is the AND
function. The AND function can be best illustrated in a circuit diagram using two
keys.

The second binary logic operation is the OR function. The OR function can also be
represented in a circuit diagram.

Key 1 Key 2

Key 3

If both Key 1 and Key 2
are pressed, the bulb
lights up.

Key 4
If either key 3 or key 4
is pressed, the bulb
lights up.

Introduction to STEP 7

1-2 STEP 7 Getting Started
C79000-G7076-C560-02

The third binary logic operation is the memory element. The SR function reacts
within a circuit diagram to certain voltage states and passes these on accordingly.

Memory Element

S

R

Key S

Key R

If key S is pressed, the bulb lights up
and remains lit until key R is pressed.

Introduction to STEP 7

1-3STEP 7 Getting Started
C79000-G7076-C560-02

1.2 Combining Hardware and Software

Using the STEP 7 software, you can create your S7 program within a project. The
S7 programmable controller consists of a power supply unit, a CPU, and input and
output modules (I/O modules).

The programmable logic controller (PLC) monitors and controls your machine with
the S7 program. The I/O modules are addressed in the S7 program via the
addresses.

Transferring a program

STEP 7 software

Machine to be
controlled

Input module

CPU

Power supply module

Output module

Programming
device cable

Programming device

Introduction to STEP 7

1-4 STEP 7 Getting Started
C79000-G7076-C560-02

1.3 Basic Procedure Using STEP 7

Before you create a project, you should know that STEP 7 projects can be created
in different orders.

Option 2Option 1

If you are creating comprehensive programs with many inputs and outputs, we
recommend you configure the hardware first. The advantage of this is that STEP 7
displays the possible addresses in the Hardware Configuration Editor.

If you choose the second option, you have to determine each address yourself, depending
on your selected components and you cannot call these addresses via STEP 7.

In the hardware configuration, not only can you define addresses, but you can also change
the parameters and properties of modules. If you want to operate several CPUs, for
example, you have to match up the MPI addresses of the CPUs.

Since we are only using a small number of inputs and
outputs in the Getting Started manual, we will skip the
hardware configuration for now and start with the
programming.

Configuring the hardware
(Chapter 6)

Creating a program
(Chapters 3 to 5)

Creating a program
(Chapters 3 to 5)

Configuring the hardware
(Chapter 6)

Transferring the program to the CPU and debugging
(Chapter 7)

Designing the solution to the automation task

Creating a project (Chapter 2)

Introduction to STEP 7

1-5STEP 7 Getting Started
C79000-G7076-C560-02

1.4 Installing STEP 7

Regardless of whether you want to start with programming or configuring
hardware, you first have to install STEP 7. If you are using a SIMATIC
programming device, STEP 7 is already installed.

When installing the STEP 7 software
on a programming device or PC
without a previously installed version of
STEP 7, note the software and
hardware requirements. You can find
these in the Readme.wri on the
STEP 7 CD under
<Drive>:/STEP 7 /Disk1.

If you need to install STEP 7 first,
insert the STEP 7 CD in the CD-ROM
drive now. The installation program
starts automatically. Follow the
instructions on the screen.

Once the installation is complete and
you have restarted the computer, the
"SIMATIC Manager" icon will appear
on your Windows desktop.

If you double-click the "SIMATIC Manager" icon following installation, the STEP 7 Wizard
will be started automatically.

You can find additional notes on installation in the
Readme.wri file on the STEP 7 CD under

<Drive>:/STEP 7 /Disk1\Readme.wri.

If the installation does not start
automatically, you can also find the
installation program on the CD-ROM
under
<Drive>:/STEP 7 /Disk1/setup.exe.

Introduction to STEP 7

1-6 STEP 7 Getting Started
C79000-G7076-C560-02

2-1STEP 7 Getting Started
C79000-G7076-C560-02

2 The SIMATIC Manager

2.1 Starting the SIMATIC Manager and Creating a Project

The SIMATIC Manager is the central window which becomes active when STEP 7
is started. The default setting starts the STEP 7 Wizard, which supports you when
creating a STEP 7 project. The project structure is used to store and arrange all
the data and programs in order.

Double-click the SIMATIC Manager
icon. The STEP 7 Wizard is activated.

Within the project, data are stored in the
form of objects in a hierarchical structure

The SIMATIC station and the CPU
contain the configuration and
parameter data of the hardware

The S7 program comprises all the
blocks with the programs necessary for
controlling the machine

The SIMATIC Manager

2-2 STEP 7 Getting Started
C79000-G7076-C560-02

In the preview, you can toggle the
view of the project structure being
created on and off.

To move to the next dialog box, click
Next.

The SIMATIC Manager

2-3STEP 7 Getting Started
C79000-G7076-C560-02

For the "Getting Started" sample
project, select CPU 314. The example
has been created in such a way that
you can actually select the CPU you
have been supplied with at any time.

The default setting for the MPI address
is 2.

Click Next to confirm the settings and
move to the next dialog box.

Select the organization block OB1 (if
this is not already selected).

Select one of the programming
languages: Ladder Logic (LAD),
Statement List (STL), or Function
Block Diagram (FBD).

Confirm your settings with Next.

Every CPU has certain
properties; for example,
regarding its memory
configuration or address
areas. This is why you have
to select the CPU before you
start programming.

The MPI address (multipoint
interface) is required in order
for your CPU to communicate
with your programming device
or PC.

OB1 represents the highest
programming level and organizes the
other blocks in the S7 program.

You can change the programming
language again at a later date.

The SIMATIC Manager

2-4 STEP 7 Getting Started
C79000-G7076-C560-02

Double-click to select the suggested
name in the "Project name" field and
overwrite it with "Getting Started."

Click Make to generate your new
project according to the preview.

When you click the Make button, the SIMATIC Manager will open with the window for the
"Getting Started" project you have created. On the following pages, we will show you what
the created files and folders are for and how you can work effectively with them.

The STEP 7 Wizard is activated each time the program is started. You can deactivate this
default setting in the first dialog box for the Wizard. However, if you create projects without
the STEP 7 Wizard, you must create each directory within the project yourself.

You can find more information under
Help > Contents in the topic "Setting
Up and Editing the Project."

The SIMATIC Manager

2-5STEP 7 Getting Started
C79000-G7076-C560-02

2.2 The Project Structure in the SIMATIC Manager and How to
Call the Online Help

As soon as the STEP 7 Wizard is closed, the SIMATIC Manager appears with the
open project window "Getting Started." From here, you can start all the STEP 7
functions and windows.

Downloading the program
and monitoring the
hardware

Opening, organizing, and printing
projects

Calling the STEP 7 online help

Setting the window display and
arrangement, selecting the
language, and making settings for
process data

Editing blocks and inserting program
components

The contents of the right-hand pane
show the objects and other folders
for the folder selected on the left

The contents of the left-hand pane
show the project structure

The SIMATIC Manager

2-6 STEP 7 Getting Started
C79000-G7076-C560-02

Calling the Help on STEP 7

F1 Option 1:

Place the cursor on any menu
command and press the F1 key. The
context-sensitive help for the selected
menu command will appear.

Option 2:
Use the menu to open the STEP 7
online help.
The contents page with various help
topics appears in the left-hand pane
and the selected topic is displayed in
the right-hand pane.
Navigate to the topic you want by
clicking the + sign in the Contents list.
At the same time, the contents of the
selected topic are displayed in the
right-hand pane.
Using Index and Find, you can enter
search strings and look for the specific
topics you require.
Option 3:
Click the question mark button in the
toolbar to turn your mouse into a help
cursor. The next time you click on a
specific object, the online help is
activated.

Navigating in the Project Structure

The project you have just created is
displayed with the selected S7 station
and CPU.

Click the + or – sign to open or close a
folder.

You can start other functions later on
by clicking the symbols displayed in
the right-hand pane.

The SIMATIC Manager

2-7STEP 7 Getting Started
C79000-G7076-C560-02

Click the S7 Program (1) folder. This
contains all the necessary program
components.

You will use the Symbols component
in Chapter 3 to give the addresses
symbolic names.

The Source Files component is used to
store source file programs. These are
not dealt with in the Getting Started
manual.

Click the Blocks folder. This contains
the OB1 you have already created
and, later on, all the other blocks.

From here, you will start programming
in Ladder Logic, Statement List, or
Function Block Diagram in Chapters 4
and 5.

Click the SIMATIC 300 Station folder.
All the hardware-related project data
are stored here.

You will use the Hardware component
in Chapter 6 to specify the parameters
of your programmable controller.

If you require further SIMATIC software for your automation task; for example, the optional
packages PLCSIM (hardware simulation program) or S7 Graph (graphic programming
language), these are also integrated in STEP 7. Using the SIMATIC Manager, for example,
you can directly open the relevant objects such as an S7 Graph function block.

You can find more information under Help > Contents in the
topics "Working Out the Automation Concept" and "Basics of
Designing the Program Structure."

You can find more information on optional packages in the
SIMATIC catalog ST 70, "Components for Completely
Integrated Automation."

The SIMATIC Manager

2-8 STEP 7 Getting Started
C79000-G7076-C560-02

STEP 7 Getting Started
C79000-G7076-C560-02 3-1

3 Programming with Symbols

3.1 Absolute Addresses

Every input and output has an absolute address predefined by the hardware
configuration. This address is specified directly; that is, absolutely.

The absolute address can be replaced by any symbolic name you choose.

SF

BATF

DC 5V

FRCE

RUN

RUN P
RUN

STOP
M RES

STOP

ON

OFF

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

L+

L+

M M

M

N

L+ L+

M

Digital input
module
Byte 1

Bits 0 to 7

Digital input
module
Byte 0

Bits 0 to 7

Digital output
module
Byte 4

Bits 0 to 7

Digital output
module
Byte 5

Bits 0 to 7

Bit 5

Absolute address: I 1.5

Byte 1

You should only use absolute programming if you do not
have to address many inputs and outputs in your S7
program.

Input

Programming with Symbols

3-2 STEP 7 Getting Started
C79000-G7076-C560-02

3.2 Symbolic Programming

In the symbol table, you assign a symbolic name and the data type to all the
absolute addresses which you will address later on in your program; for example,
for input I 0.1 the symbolic name Key 1. These names apply to all parts of the
program and are known as global variables.

Using symbolic programming, you can considerably improve the legibility of the
S7 program you have created.

Working with the Symbol Editor

Navigate in the project window
"Getting Started" until you reach
S7 Program (1) and double-click to
open the Symbols component.

Your symbol table currently only
consists of the predefined organization
block OB1.

Click Cycle Execution and overwrite it
with "Main Program" for our example.

Enter "Green Light" and "Q 4.0" in
row 2. The data type is added
automatically.

Click in the comment column of row 1
or 2 to enter a comment on the
symbol. You complete your entries in a
row by pressing Enter, which then
adds a new row.

Enter "Red Light" and "Q 4.1" in row 3
and press Enter to complete the entry.

In this way, you can assign symbolic names to all
the absolute addresses of the inputs and outputs
which your program requires.

Programming with Symbols

3-3STEP 7 Getting Started
C79000-G7076-C560-02

Save the entries or changes you have
made in the symbol table and close the
window.

Because there are lots of names for the entire "Getting Started" project, you can
copy the symbol table to your "Getting Started" project in Section 4.1.

The data type which was previously added automatically to the symbol table determines
the type of the signal to be processed for the CPU. STEP 7 uses, among others, the
following data types:

BOOL
BYTE
WORD
DWORD

Data of this type are bit combinations. 1 bit (type BOOL) to 32 bits (DWORD).

CHAR Data of this type occupy exactly one character of the ASCII character set.
INT
DINT
REAL

They are available for the processing of numerical values (for example, to calculate
arithmetic expressions).

S5TIME
TIME
DATE
TIME_OF_DAY

Data of this type represent the different time and date values within STEP 7 (for
example, to set the date or to enter the time value for a timer).

Here you can see the symbol
table for the S7 program in the
"Getting Started" example for
Statement List.

Generally speaking, only one
symbol table is created per
S7 program, regardless of
which programming language
you have selected.

All printable characters (for
example, special characters,
spaces) are permitted in the
symbol table.

You can find more information under Help >
Contents in the topics “Programming Blocks“
and "Defining Symbols".

Programming with Symbols

3-4 STEP 7 Getting Started
C79000-G7076-C560-02

STEP 7 Getting Started
C79000-G7076-C560-02 4-1

4 Creating a Program in OB1

4.1 Opening the LAD/STL/FBD Program Window

Choosing Ladder Logic, Statement List, or Function Block Diagram

With STEP 7, you create S7 programs in the standard languages Ladder Logic
(LAD), Statement List (STL), or Function Block Diagram (FBD). In practice, and for
this chapter too, you must decide which language to use.

Ladder Logic (LAD)
Suitable for users from the electrical engineering industry, for example.

Statement List (STL)
Suitable for users from the world of computer technology, for example.

Function Block Diagram (FBD)
Suitable for users from the world of circuit engineering, for example.

The block OB1 will now be opened according to the language you chose
when you created it in the project Wizard. However, you can change the
default programming language again at any time.

Creating a Program in OB1

4-2 STEP 7 Getting Started
C79000-G7076-C560-02

Copying the Symbol Table and Opening OB1

If necessary, open your "Getting
Started" project. To do this, click the
Open button in the toolbar, select the
"Getting Started" project you created,
and confirm with OK.

Depending on which programming
language you have decided to use,
open one of the following projects as
well:

• zEn01_06_STEP7__LAD_1-9

• zEn01_02_STEP7__STL_1-9

• zEn01_04_STEP7__FDB_1-9

Here you can see all three sample
projects displayed.

Navigate in the „zEn01_XXX“ until you
reach the Symbols component and
copy this by dragging and dropping it
to the S7 Program folder in your
project window "Getting Started."

Then close the window „zEn01_XXX“
.

Double-click OB1 in the "Getting
Started" project. The LAD/STL/FBD
program window is opened.

In STEP 7, OB1 is processed cyclically by the CPU. The CPU reads line by line and
executes the program commands. When the CPU returns to the first program line, it has
completed exactly one cycle. The time required for this is known as the scan cycle time.

Depending on which programming language you have selected, continue reading in either
Section 4.2 for programming in Ladder Logic, Section 4.3 for Statement List, or Section 4.4
for Function Block Diagram.

You can find more information under Help > Contents
in the topics “Programming Blocks“ and "Creating
Blocks and Libraries.“

Drag and drop means that you click any object
with the mouse and move it whilst keeping the
mouse button depressed. When you release the
mouse button, the object is pasted at the selected
position.

Creating a Program in OB1

4-3STEP 7 Getting Started
C79000-G7076-C560-02

The LAD/STL/FBD Program Window

All blocks are programmed in the LAD/STL/FBD program window. Here, you can
see the view for Ladder Logic.

Program Elements catalog,
here for Ladder Logic

Help on the selected
program element

Program input line (also network
and current path)

Title and comment field for
the block or network

Toggling the Program
Elements catalog on and off

Inserting a new
network

Changing the
programming language
view

The most important program
elements for Ladder Logic and
Function Block Diagram

Moving the table split
(toggling the view of the
table on and off)

The variable declaration table contains
the parameters and local variables for
the block

Information on the selected
program element

Creating a Program in OB1

4-4 STEP 7 Getting Started
C79000-G7076-C560-02

4.2 Programming OB1 in Ladder Logic

In the following section, you will program a series circuit, a parallel circuit, and the
set / reset memory function in Ladder Logic (LAD).

Programming a Series Circuit in Ladder Logic

If necessary, set LAD as the
programming language in the View
menu.

Click in the title area of OB1 and enter
"Cyclically processed main program,"
for example.

Select the current path for your first
element.

Click the button in the toolbar and
insert a normally open contact.

In the same way, insert a second
normally open contact.

Insert a coil at the right-hand end of
the current path.

The addresses of the normally open
contacts and the coil are still missing in
the series circuit.

Check whether symbolic
representation is activated.

Creating a Program in OB1

4-5STEP 7 Getting Started
C79000-G7076-C560-02

Click the ??.? sign and enter the
symbolic name "Key_1" (in quotation
marks).
Confirm with Enter.

Enter the symbolic name "Key_2" for
the second normally open contact.

Enter the name "Green_Light" for the
coil.

You have now programmed a
complete series circuit.

Save the block if there are no more
symbols shown in red.

Symbols are indicated in red if, for example, they do not exist in the symbol table, or if
there is a syntax error.

You can also insert the symbolic name directly from the symbol table. Click the ??.?
sign and then the menu command Insert > Symbol. Scroll through the pull-down list
until you reach the corresponding name and select it. The symbolic name is added
automatically.

Creating a Program in OB1

4-6 STEP 7 Getting Started
C79000-G7076-C560-02

Programming a Parallel Circuit in Ladder Logic

Select Network 1.

Insert a new network.

Select the current path again.

Insert a normally open contact and a
coil.

Select the vertical line of the current
path.

Insert a parallel branch.

Add another normally open contact in
the parallel branch.

Close the branch (if necessary, select
the lower arrow).

The addresses are still missing in the
parallel circuit.

To assign symbolic addresses,
proceed in the same way as for the
series circuit.

Overwrite the upper normally open
contact with "Key_3," the lower contact
with "Key_4," and the coil with
"Red_Light."

Save the block.

Creating a Program in OB1

4-7STEP 7 Getting Started
C79000-G7076-C560-02

 Programming a Memory Function in Ladder Logic

Select Network 2 and insert another
network.

Select the current path again.

Navigate in the Program Elements
catalog under Bit Logic until you
reach the SR element. Double-click to
insert the element.

Insert a normally open contact in front
of each of the inputs S and R.

Enter the following symbolic names for
the SR element:
Upper contact "Automatic_On"
Lower contact "Manual_On"
SR element "Automatic_Mode"

Save the block and close the window.

If you want to see the difference between absolute and symbolic addressing, deactivate the
menu command View > Display > Symbolic Representation.

You can change the line break for symbolic addressing in the LAD/STL/FBD program
window by using the menu command Options > Customize and then selecting "Width of
address field" in the "LAD/FBD" tab. Here you can set the line break between 10 and 24
characters.

Example:
Symbolic addressing in LAD

Example:
Absolute addressing in LAD

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing Ladder
Instructions."

Creating a Program in OB1

4-8 STEP 7 Getting Started
C79000-G7076-C560-02

4.3 Programming OB1 in Statement List

In the following section, you will program an AND instruction, an OR instruction,
and the memory instruction set/reset in Statement List (STL).

Programming an AND Instruction in Statement List

If necessary, set STL as the
programming language in the View
menu.

Check whether symbolic
representation is activated.

Click in the title area of OB1 and enter
"Cyclically processed main program,"
for example.

Select the area for your first statement.

Type an A (AND) in the first program
line, a space, and then the symbolic
name "Key_1" (in quotation marks).

Complete the line with Enter. The
cursor jumps to the next line.

Creating a Program in OB1

4-9STEP 7 Getting Started
C79000-G7076-C560-02

In the same way, complete the AND
instruction as shown.

You have now programmed a
complete AND instruction. Save the
block if there are no more symbols
shown in red.

Programming an OR Instruction in Statement List

Select Network 1.

Insert a new network and select the
input area again.

Enter an O (OR) and the symbolic
name "Key_3" (in the same way as for
the AND instruction).

Complete the OR instruction and save
it.

Symbols are indicated in red if, for example, they do not exist in the symbol table, or
if there is a syntax error.

You can also insert the symbolic name directly from the symbol table. Click the ??.?
sign and then the menu command Insert > Symbol. Scroll through the pull-down list
until you reach the corresponding name and select it. The symbolic name is added
automatically.

Creating a Program in OB1

4-10 STEP 7 Getting Started
C79000-G7076-C560-02

Programming a Memory Instruction in Statement List

Select Network 2 and insert another
network.

In the first line, type the instruction A
with the symbolic name
"Automatic_On."

Complete the memory instruction and
save it. Close the block.

If you want to see the difference between absolute and symbolic addressing, deactivate the
menu command View > Display > Symbolic Representation.

Example:
Symbolic addressing in STL

Example:
Absolute addressing in STL

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing STL
Statements."

Creating a Program in OB1

4-11STEP 7 Getting Started
C79000-G7076-C560-02

4.4 Programming OB1 in Function Block Diagram

In the following section, you will program an AND function, an OR function, and a
memory function in Function Block Diagram (FBD).

Programming an AND Function in Function Block Diagram

If necessary, set FBD as the
programming language in the View
menu.

Click in the title area of OB1 and enter
"Cyclically processed main program,"
for example.

Select the input area for the AND
function (below the comment field).

Insert an AND box (&) and an
assignment (=).

The addresses of the elements are still
missing in the AND function.

Check whether symbolic
representation is activated.

Creating a Program in OB1

4-12 STEP 7 Getting Started
C79000-G7076-C560-02

Click on the ??.? sign and enter the
symbolic name "Key_1" (in quotation
marks). Confirm with Enter.

Enter the symbolic name "Key_2" for
the second input.

Enter the name "Green_Light" for the
assignment.

You have now programmed a
complete AND function.

If there are no more symbols shown in
red, you can save the block.

Symbols are indicated in red if, for example, they do not exist in the symbol table, or
if there is a syntax error.

You can also insert the symbolic name directly from the symbol table. Click the ??.?
sign and then the menu command Insert > Symbol. Scroll through the pull-down list
until you reach the corresponding name and select it. The symbolic name is added
automatically.

Creating a Program in OB1

4-13STEP 7 Getting Started
C79000-G7076-C560-02

Programming an OR Function in Function Block Diagram

Insert a new network.

Select the input area again for the OR
function.

Insert an OR box (≥1) and an
assignment (=).

The addresses are still missing in the
OR function. Proceed in the same way
as for the AND function.

Enter "Key_3" for the upper input,
"Key_4" for the lower input, and
"Red_Light" for the assignment.

Save the block.

Creating a Program in OB1

4-14 STEP 7 Getting Started
C79000-G7076-C560-02

Programming a Memory Function in Function Block Diagram

Select Network 2 and insert another
network. Select the input area again
(below the comment field).

Navigate in the Program Elements
catalog under Bit Logic until you
reach the SR element. Double-click to
insert the element.

"Automatic Mode"

"Automatic on"

"Manual on"

Enter the following symbolic names for
the SR element:
Set "Automatic_On"
Reset "Manual_On"
Memory bit "Automatic_Mode"

Save the block and close the window.

If you want to see the difference between absolute and symbolic addressing, deactivate the
menu command View > Display > Symbolic Representation.

You can change the line break for symbolic addressing in the LAD/STL/FBD program
window by using the menu command Options > Customize and then selecting "Address
Field Width" in the "LAD/FBD" tab. Here you can set the line break between 10 and 24
characters.

Example:
Symbolic addressing in FBD

Example:
Absolute addressing in FBD

"Green_Light"

"Key_2"

"Key_1"

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing FBD
Statements."

5-1STEP 7 Getting Started
C79000-G7076-C560-02

5 Creating a Program with Function Blocks
and Data Blocks

5.1 Creating and Opening Function Blocks (FB)

The function block (FB) is below the organization block in the program hierarchy. It
contains a part of the program which can be called many times in OB1. All the
formal parameters and static data of the function block are saved in a separate
data block (DB), which is assigned to the function block.

You will program the function block (FB1, symbolic name "Engine"; see symbol
table, page 3-3) in the LAD/STL/FBD program window, which you are now familiar
with. To do this, you should use the same programming language as in Chapter 4
(programming OB1).

You should have already copied the
symbol table into your project "Getting
Started." If not, read how to do this on
page 4-2, copying the symbol table,
and then return to this section.

If necessary, open the "Getting
Started" project.

Navigate to the Blocks folder and
open it.

Click in the right-hand half of the
window with the right mouse button.

The pop-up menu for the right mouse
button contains the most important
commands from the menu bar. Insert a
function block as a new object.

Creating a Program with Function Blocks and Data Blocks

5-2 STEP 7 Getting Started
C79000-G7076-C560-02

Double-click FB1 to open the
LAD/STL/FBD program window.

In the "Properties – Function Block"
dialog box, select the language in
which you want to create the block,
activate the check box "Multiple
instance FB," and confirm the
remaining settings with OK.

The function block FB1 has been
inserted in the Blocks folder.

Depending on which programming language you have selected, continue reading in either
Section 5.2 for Ladder Logic, Section 5.3 for Statement List, or Section 5.4 for Function
Block Diagram.

You can find more information under Help >
Contents in the topics "Programming Blocks" and
"Creating Blocks and Libraries."

Creating a Program with Function Blocks and Data Blocks

5-3STEP 7 Getting Started
C79000-G7076-C560-02

5.2 Programming FB1 in Ladder Logic

We will now show you how to program a function block which can, for example,
control and monitor a petrol or diesel engine using two different data blocks.

All "engine-specific" signals are passed on as block parameters from the
organization block to the function block and must therefore be listed in the variable
declaration table as input and output parameters (declaration "in" and "out").

You should already know how to enter a series circuit, a parallel circuit, and a
memory function with STEP 7.

1. Filling out the Variable Declaration Table

Your LAD/STL/FBD program window is
open and the option View > LAD
(programming language) is activated.

Note that FB1 is now in the header,
because you double-clicked FB1 to
open the program window.

Enter the following declarations in the variable declaration table.

To do this, click a cell and use the corresponding name and the comment from the
illustration below.

You can select the type with the pop-up menu command Elementary Types using
the right mouse button. When you press Enter, the cursor jumps to the next
column, or a new row is inserted.

Only letters, numbers, and the underscore are permitted
characters for the names of the block parameters in the
variable declaration table.

Creating a Program with Function Blocks and Data Blocks

5-4 STEP 7 Getting Started
C79000-G7076-C560-02

2. Programming an Engine to Switch On and Off

Insert a normally open contact, a
normally closed contact, and an SR
element in series in Network 1 using
the corresponding buttons in the
toolbar or the Program Elements
catalog.

Then select the current path
immediately before the input R.

Insert another normally open contact.
Select the current path immediately
before this contact.

Insert a normally closed contact
parallel to the normally open contact.

Check whether symbolic
representation is activated.

Select the question marks and enter the corresponding names from the variable
declaration table (the # sign is assigned automatically).

Enter the symbolic name "Automatic_Mode" for the normally closed contact in the
series circuit.

Then save your program.

Local block variables are indicated with a # sign and are only valid in the
block.

Global variables appear in quotation marks. These are defined in the
symbol table and are valid for the entire program.

The signal state "Automatic_Mode" is defined in OB1 (Network 3; see page
4-7) by another SR element and now queried in FB1.

Creating a Program with Function Blocks and Data Blocks

5-5STEP 7 Getting Started
C79000-G7076-C560-02

3. Programming Speed Monitoring

Insert a new network and select the
current path.

Then navigate in the Program
Elements catalog until you reach the
Compare function and insert a GE_I.

Also insert a coil in the current path.

Select the question marks again and label the coil and the comparator with the
names from the variable declaration table.

Then save your program.

When is the engine switched on and off?
When the variable #Switch_On has signal state "1" and the variable "Automatic_Mode" has
signal state "0," the engine is switched on. This function is not enabled until
"Automatic_Mode" is negated (normally closed contact).

When the variable #Switch_Off has signal state "1" or the variable #Fault has signal state
"0," the engine is switched off. This function is achieved again by negating #Fault (#Fault is
a "zero-active" signal and has the signal "1" in the normal state and "0" if a fault occurs).

How does the comparator monitor the engine speed?
The comparator compares the variables #Actual_Speed and #Setpoint_Speed and assigns
the result of the variables to #Setpoint_Speed_Reached (signal state "1").

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing the Variable
Declaration Table" or in "Editing LAD Instructions."

Creating a Program with Function Blocks and Data Blocks

5-6 STEP 7 Getting Started
C79000-G7076-C560-02

5.3 Programming FB1 in Statement List

We will now show you how to program a function block which can, for example,
control and monitor a petrol or diesel engine using two different data blocks.

All "engine-specific" signals are passed on as block parameters from the
organization block to the function block and must therefore be listed in the variable
declaration table as input and output parameters (declaration "in" and "out").

You should already know how to enter an AND instruction, an OR instruction, and
the set/reset memory instructions with STEP 7.

1. Filling out the Variable Declaration Table

Your LAD/STL/FBD program window is
open and the option View > STL
(programming language) is activated.

Note that FB1 is now in the header,
because you double-clicked FB1 to
open the program window.

Enter the following declarations in the variable declaration table.

To do this, click a cell and use the corresponding name and the comment from the
illustration below.

You can select the type with the pop-up menu command Elementary Types using
the right mouse button. When you press Enter, the cursor jumps to the next
column, or a new row is inserted.

Only letters, numbers, and the underscore are permitted
characters for the names of the block parameters in the
variable declaration table.

Creating a Program with Function Blocks and Data Blocks

5-7STEP 7 Getting Started
C79000-G7076-C560-02

2. Programming an Engine to Switch On and Off

Check whether symbolic
representation is activated.

Enter the corresponding instructions in
Network 1.

3. Programming Speed Monitoring

Insert a new network and enter the
corresponding instructions. Then save
your program.

Local block variables are indicated with a # sign and
are only valid in the block.

Global variables appear in quotation marks. These
are defined in the symbol table and are valid for the
entire program.

The signal state "Automatic_Mode" is defined in
OB1 (Network 3; see page 4-10) by another SR
element and now queried in FB1.

When is the engine switched on and off?
When the variable #Switch_On has signal state "1" and the variable "Automatic_Mode" has
signal state "0," the engine is switched on. This function is not enabled until
"Automatic_Mode" is negated (normally closed contact).

When the variable #Switch_Off has signal state "1" or the variable #Fault has signal state
"0," the engine is switched off. This function is achieved again by negating #Fault (#Fault is
a "zero-active" signal and has the signal "1" in the normal state and "0" if a fault occurs).

How does the comparator monitor the engine speed?
The comparator compares the variables #Actual_Speed and #Setpoint_Speed and assigns
the result of the variables to #Setpoint_Speed_Reached (signal state "1").

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing the Variable
Declaration Table" or in "Editing STL Statements."

Creating a Program with Function Blocks and Data Blocks

5-8 STEP 7 Getting Started
C79000-G7076-C560-02

5.4 Programming FB1 in Function Block Diagram

We will now show you how to program a function block which can, for example,
control and monitor a petrol or diesel engine using two different data blocks.

All "engine-specific" signals are passed on as block parameters from the
organization block to the function block and must therefore be listed in the variable
declaration table as input and output parameters (declaration "in" and "out").

You should already know how to enter an AND function, an OR function, and a
memory function with STEP 7.

1. Filling out the Variable Declaration Table

Your LAD/STL/FBD program window is
open and the option View > FBD
(programming language) is activated.

Note that FB1 is now in the header,
because you double-clicked FB1 to
open the program window.

Enter the following declarations in the variable declaration table.

To do this, click a cell and use the corresponding name and the comment from the
illustration below.

You can select the type with the pop-up menu command Elementary Types using
the right mouse button. When you press Enter, the cursor jumps to the next
column, or a new row is inserted.

Only letters, numbers, and the underscore are
permitted characters for the names of the block
parameters in the variable declaration table.

Creating a Program with Function Blocks and Data Blocks

5-9STEP 7 Getting Started
C79000-G7076-C560-02

2. Programming an Engine to Switch On and Off

Insert an SR function in Network 1
using the Program Elements catalog
(Bit Logic folder).

Add an AND box at input S (Set), and
an OR box at input R (Reset).

Check whether symbolic
representation is activated.

Click the ??.? sign and enter the corresponding names from the declaration table
(the # sign is assigned automatically).

Make sure that one input of the AND function is addressed with the symbolic
name "Automatic_Mode."

Negate the inputs "Automatic_Mode" and #Fault with the corresponding button
from the toolbar.

Then save your program.

Local block variables are indicated with a # sign and are only
valid in the block.

Global variables appear in quotation marks. These are
defined in the symbol table and are valid for the entire
program.

The signal state "Automatic_Mode" is defined in OB1
(Network 3; see page 4-14) by another SR element and now
queried in FB1.

Creating a Program with Function Blocks and Data Blocks

5-10 STEP 7 Getting Started
C79000-G7076-C560-02

3. Programming Speed Monitoring

Insert a new network and select the
input area.

Then navigate in the Program
Elements catalog under you reach the
Compare function, and insert a GE_I.

Append an output assignment to the comparator and address the inputs with the
names from the variable declaration table.

Then save your program.

When is the engine switched on and off?
When the variable #Switch_On has signal state "1" and the variable "Automatic_Mode" has
signal state "0," the engine is switched on. This function is not enabled until
"Automatic_Mode" is negated (normally closed contact).

When the variable #Switch_Off has signal state "1" or the variable #Fault has signal state
"0," the engine is switched off. This function is achieved again by negating #Fault (#Fault is
a "zero-active" signal and has the signal "1" in the normal state and "0" if a fault occurs).

How does the comparator monitor the engine speed?
The comparator compares the variables #Actual_Speed and #Setpoint_Speed and assigns
the result of the variables to #Setpoint_Speed_Reached (signal state "1").

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing the Variable
Declaration Table" or in "Editing FBD Instructions."

Creating a Program with Function Blocks and Data Blocks

5-11STEP 7 Getting Started
C79000-G7076-C560-02

5.5 Generating Instance Data Blocks and Changing Actual
Values

You have just programmed the function block FB1 ("Engine") and defined, among
other things, the engine-specific parameters in the variable declaration table.

In order for you to be able to program the call for the function block in OB1 later
on, you must generate the corresponding data block. An instance data block (DB)
is always assigned to a function block.

The function block is to control and monitor a petrol or diesel engine. The different
setpoint speeds of the engines are stored in two separate data blocks, in which
the actual value (#Setpoint_Speed) is changed.

By centrally programming the function block only once, you can cut down on the
amount of programming involved.

The "Getting Started" project is open in
the SIMATIC Manager.

Navigate to the Blocks folder and click
in the right half of the window with the
right mouse button.

Insert a data block using the pop-up
menu with the right mouse button.

Accept all the settings displayed in the
"Properties" dialog box with OK.

The data block DB1 is added to the
"Getting Started" project.

Double-click to open DB1.

Creating a Program with Function Blocks and Data Blocks

5-12 STEP 7 Getting Started
C79000-G7076-C560-02

Activate the option Data block
referencing a function block in the
"New Data Block" dialog box.

Confirm the assignment "FB1, Engine“
with OK.

The LAD/STL/FBD program window
opens with the data from the variable
declaration table for FB1.

DB1 is now to contain the data specific
to a petrol engine. You still have to
enter these data. First set the Data
View.

Next enter the value "1500" for the
petrol engine in the Actual Value
column (in the row "Setpoint_Speed).
You have now defined the maximum
speed for this engine.

Save DB1 and close the program
window.

In the same way as for DB1, generate
another data block, DB2, for FB1.

Now enter the actual value "1200" for
the diesel engine.

By changing the actual values, you have finished your preparations for controlling two
engines with just one function block. To control more engines, all you have to do is generate
additional data blocks.

The next thing you have to do is program the call for the function block in OB1. To do this,
continue reading in Section 5.6 for Ladder Logic, Section 5.7 for Statement List, or
Section 5.8 for Function Block Diagram, depending on the programming language you are
using.

You can find more information under Help > Contents
in the topics "Programming Blocks" and "Creating
Data Blocks."

Creating a Program with Function Blocks and Data Blocks

5-13STEP 7 Getting Started
C79000-G7076-C560-02

5.6 Programming a Block Call in Ladder Logic

All the work you have done programming a function block is of no use unless you
call this block in OB1. A data block is used for each function block call, and in this
way, you can control both engines.

The SIMATIC Manager is open with
your "Getting Started" project.

Navigate to the Blocks folder and
open OB1.

Insert Network 4 in the LAD/STL/FBD
program window. Then navigate in the
Program Elements catalog until you
reach FB1 and insert this block.

Insert a normally open contact in front
of each of the following: Switch_On,
Switch_Off, and Fault.

Click the ??? sign above "Engine" and
then, keeping the cursor in the same
position, click in the input frame with
the right mouse button.

Select Insert Symbol in the pop-up
menu using the right mouse button. A
pull-down list will appear. The first time
you do this, the procedure may take
some time.

OB1

Call

DB1
Petrol Engine

Data

DB2
Diesel Engine

Data

FB1
"Engine"

Creating a Program with Function Blocks and Data Blocks

5-14 STEP 7 Getting Started
C79000-G7076-C560-02

Click the data block Petrol. This block
is then entered automatically in the
input frame in quotation marks.

Click the question marks and address all the other parameters of the function
block using the corresponding symbolic names in the pull-down list.

The engine-specific input
and output variables
(declaration "in" and "out")
are displayed in the FB
"Engine."

A signal "PE_xxx" is
assigned to each of the
variables for the petrol
engine.

Creating a Program with Function Blocks and Data Blocks

5-15STEP 7 Getting Started
C79000-G7076-C560-02

Program the call for the function block "Engine" (FB1) with the data block "Diesel"
(DB2) in a new network and use the corresponding addresses from the pull-down
list.

Save your program and close the
block.

A signal "DE_xxx" is
assigned to each of the
variables for the diesel
engine.

When you create program structures with organization blocks, function blocks, and data
blocks, you must program the call for subordinate blocks (such as FB1) in the block above
them in the hierarchy (for example, OB1). The procedure is always the same.

You can also give the various blocks symbolic names in the symbol table (for example,
FB1 has the name "Engine" and DB1 the name "Petrol").

You can archive or print out the programmed blocks at any time. The corresponding
functions can be found in the SIMATIC Manager under the menu commands File >
Archive or File > Print.

You can find more information under Help > Contents
in the topics "Calling Reference Helps," "Language
Description: LAD," and "Program Control Instructions."

Creating a Program with Function Blocks and Data Blocks

5-16 STEP 7 Getting Started
C79000-G7076-C560-02

5.7 Programming a Block Call in Statement List

All the work you have done programming a function block is of no use unless you
call this block in OB1. A data block is used for each function block call, and in this
way, you can control both engines.

The SIMATIC Manager is open with
your "Getting Started" project.

Navigate to the Blocks folder and
open OB1.

Insert Network 4 in the LAD/STL/FBD
program window.

Type CALL "Engine", "Petrol" in the
code section and then press Enter.

All the parameters of the function block
"Petrol" are displayed.

Position the cursor after the equals
sign of Switch_On and press the right
mouse button.

Select Insert Symbol in the pop-up
menu using the right mouse button. A
pull-down list will appear. The first time
you do this, the procedure may take
some time.

OB1

Call

DB1
Petrol Engine

Data

DB2
Diesel Engine

Data

FB1
"Engine"

Creating a Program with Function Blocks and Data Blocks

5-17STEP 7 Getting Started
C79000-G7076-C560-02

Click the name Switch_On_PE. This
is taken from the pull-down list and
added automatically in quotation
marks.

Assign all the required addresses to
the variables of the function block
using the pull-down list.

Program the call for the function block
"Engine" (FB1) with the data block
"Diesel" (DB2) in a new network.
Proceed in the same way as for the
other call.

Save your program and close the
block.

A signal "PE_xxx" is assigned
to each of the variables for
the petrol engine.

When you create program structures with organization blocks, function blocks, and data
blocks, you must program the call for subordinate blocks (such as FB1) in the block above
them in the hierarchy (for example, OB1). The procedure is always the same.

You can also give the various blocks symbolic names in the symbol table (for example, FB1
has the name "Engine" and DB1 the name "Petrol").

You can archive or print out the programmed blocks at any time. The corresponding
functions can be found in the SIMATIC Manager under the menu commands File >
Archive or File > Print.

You can find more information under Help > Contents
in the topics "Calling Reference Helps," "Language
Description: STL," and "Program Control Instructions."

Creating a Program with Function Blocks and Data Blocks

5-18 STEP 7 Getting Started
C79000-G7076-C560-02

5.8 Programming a Block Call in Function Block Diagram

All the work you have done programming a function block is of no use unless you
call this block in OB1. A data block is used for each function block call, and in this
way, you can control both engines.

The SIMATIC Manager is open with
your "Getting Started" project.

Navigate to the Blocks folder and
open OB1.

Insert Network 4 in the LAD/STL/FBD
program window. The navigate in the
Program Elements catalog until you
reach FB1 and insert this block.

All the engine-specific input and output
variables are displayed.

Click the ??? sign above "Engine" and
then, keeping the cursor in the same
position, click in the input frame with
the right mouse button.

Select Insert Symbol in the pop-up
menu using the right mouse button. A
pull-down list will appear. The first time
you do this, the procedure may take
some time.

OB1

Call

DB1
Petrol Engine

Data

DB2
Diesel Engine

Data

FB1
"Engine"

Creating a Program with Function Blocks and Data Blocks

5-19STEP 7 Getting Started
C79000-G7076-C560-02

Click the data block Petrol. It is taken
from the pull-down list and entered
automatically in the input frame in
quotation marks.

Address all the other parameters of the function block using the corresponding
symbolic names in the pull-down list.

A signal "PE_xxx" is assigned
to each of the variables for the
petrol engine.

Creating a Program with Function Blocks and Data Blocks

5-20 STEP 7 Getting Started
C79000-G7076-C560-02

Program the call for the function block "Engine" (FB1) with the data block "Diesel"
(DB2) in a new network and use the corresponding addresses from the pull-down
list.

Save your program and close the
block.

When you create program structures with organization blocks, function blocks, and data
blocks, you must program the call for subordinate blocks (such as FB1) in the block above
them in the hierarchy (for example, OB1). The procedure is always the same.

You can also give the various blocks symbolic names in the symbol table (for example, FB1
has the name "Engine" and DB1 the name "Petrol").

You can archive or print out the programmed blocks at any time. The corresponding
functions can be found in the SIMATIC Manager under the menu commands File > Archive
or File > Print.

A signal "DE_xxx" is assigned to
each of the variables for the
diesel engine.

You can find more information under Help > Contents
in the topics "Calling Reference Helps," "Language
Description: FBD," and "Program Control Instructions."

STEP 7 Getting Started
C79000-G7076-C560-02 6-1

6 Configuring the Central Rack

6.1 Configuring Hardware

You can configure the hardware once you have created a project with a SIMATIC
station. The project structure which was created with the STEP 7 Wizard in
Section 2.1 meets all the requirements for this.

The hardware is configured with STEP 7. These configuration data are transferred
to the programmable controller later on "downloading" (see Chapter 7).

The starting point is the open SIMATIC
Manager together with the "Getting
Started" project.

Open the SIMATIC 300 Station folder
and double-click the Hardware
symbol.

The "HW Config“ window opens. The CPU you selected on creating the project is
displayed. For the "Getting Started" project, this is CPU 314.

Rack with individual slots

Configuration table with
the MPI and I/O
addresses

Hardware
Catalog

Help on the selected element

Short information on the
selected element

Configuring the Central Rack

6-2 STEP 7 Getting Started
C79000-G7076-C560-02

First you require a power supply
module. Navigate in the catalog until
you reach the PS307 2A and drag and
drop this onto slot 1.

Navigate until you find the input
module (DI, Digital Input) SM321
DI32xDC24V and insert this in slot 4.
Slot 3 remains empty.

In the same way, insert the output
module SM322 DO32xDC24V/0.5A in
slot 5.

In order to change the parameters (for example, address) of a module within a
project, double-click the module. However, you should only change the
parameters if you are sure you know what effects the changes will have on your
programmable controller.

No changes are necessary for the "Getting Started" project.

The data are prepared for transfer to
the CPU using the menu command
Save and Compile.

Once you close the "HW Config"
application, the System Data symbol
will appear in the Blocks folder.

You can also check your configuration for errors using the menu command Station >
Consistency Check. STEP 7 will provide you with possible solutions to any errors which
may have occurred.

You can find more information under Help > Contents in
the topics "Configuring theHardware" and "Configuring
Central Racks."

STEP 7 Getting Started
C79000-G7076-C560-02 7-1

7 Downloading and Debugging the Program

7.1 Establishing an Online Connection

Using the supplied project "GS-LAD_Example" or the "Getting Started" project you
have created and a simple test configuration, we will show you how to download
the program to the programmable logic controller (PLC) and then debug it.

You should have:

• Configured the hardware for the "Getting Started" project (see Chapter 6)

• Set up the hardware according to the installation manual

Example of a series circuit (AND function):
Output Q 4.0 is not to light up (diode Q 4.0 lights up on the digital output module)
unless both Key I 0.1 and Key I 0.2 are pressed. Set up the test configuration
below using wires and your CPU.

SF

BATF

DC 5V

FRCE

RUN

RUN P
RUN

STOP
M RES

STOP

ON
OFF

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

L+

L+

M M

M

N

L+ L+

M

24 Volts
Byte 1

Byte 0

Byte 5

Byte 4

I 0.1

I 0.2

Q 4.0

Programming
device with
STEP 7
software

Operating mode
keyswitch

RackPower supply
(on / off)

Programming device
cable

Downloading and Debugging the Program

7-2 STEP 7 Getting Started
C79000-G7076-C560-02

Configuring the Hardware

To assemble a module on the rail, proceed in the order given below:

• Attach the module onto the bus connector

• Hang the module on the rail and swing it downwards

• Screw the module in place

• Assemble the remaining modules

• Insert the key in the CPU once you have finished assembling all the modules.

You can still carry out the test even if you are using different hardware to that shown in the
diagram. You simply have to keep to the addressing of the inputs and outputs.

STEP 7 offers you various ways of debugging your program; for example, using the
program status or by means of the variable table.

You can find more information on configuring the
central rack in the manuals "S7-300, Hardware and
Installation / Module Specifications" and "S7-400 /
M7-400 – Hardware."

Downloading and Debugging the Program

7-3STEP 7 Getting Started
C79000-G7076-C560-02

7.2 Downloading the Program to the Programmable Controller

You must have already established an online connextion in order tp download the
program...

Switch on the power supply using the
ON/OFF switch. The diode "DC 5V"
will light up on the CPU.

Turn the operating mode switch to the
STOP position (if not already in
STOP). The red "STOP" LED will light
up.

Resetting the CPU and Switching it to RUN

Turn the operating mode switch to the
MRES position and hold it there for at
least 3 seconds until the red "STOP"
LED starts flashing slowly.

Release the switch and, after a
maximum of 3 seconds, turn it to the
MRES position again. When the
"STOP" LED flashes quickly, the CPU
has been reset.

If the "STOP" LED does not start
flashing quickly, repeat the procedure.

Downloading the Program to the CPU

Now turn the operating mode switch to
"STOP" again to download the
program.

A memory reset deletes
all the data on the CPU.
The CPU is then in the
initial state.

Downloading and Debugging the Program

7-4 STEP 7 Getting Started
C79000-G7076-C560-02

Start the SIMATIC Manager and open
the "Getting Started" project in the
"Open" dialog box (if it is not already
open).

In addition to the "Getting Started
Offline" window, open the "Getting
Started ONLINE" window. The online
or offline status is indicated by the
different colored headers.

Navigate in both windows to the
Blocks folder.

The offline window shows the situation
on the programming device; the online
window shows the situation on the
CPU.

Select the Blocks folder in the offline
window and then download the
program to the CPU using the menu
command PLC > Download.
Confirm the prompt with OK.

The program blocks are displayed in
the online window when you download
them.

The system functions (SFCs) remain in
the CPU even though you have carried
out a memory reset. The CPU provides
these functions of the operating system.
They do not have to be downloaded, but
they cannot be deleted.

You can also call the menu command
PLC > Download using the
corresponding button in the toolbar or
from the pop-up menu using the right
mouse button.

Downloading and Debugging the Program

7-5STEP 7 Getting Started
C79000-G7076-C560-02

Switching on the CPU and Checking the Operating Mode

Turn the operating mode switch to
RUN-P. The green "RUN" LED lights
up and the red "STOP" LED goes out.
The CPU is ready for operation.

When the green LED lights up, you
can start testing the program.

If the red LED remains lit, an error has
occurred. You would then have to
evaluate the diagnostic buffer in order
to diagnose the error.

Downloading individual blocks

In order to react to errors quickly in practice, blocks can be transferred individually to the
CPU using the drag and drop function.

When you download blocks, the operating mode switch on the CPU must be in either
"RUN-P" or "STOP" mode. Blocks downloaded in "RUN-P" mode are activated immediately.
You should therefore remember the following:

• If error-free blocks are overwritten with faulty blocks, this will lead to a plant failure. You
can avoid this by testing your blocks before you download them.

• If you do not observe the order in which blocks are to be downloaded – first the
subordinate blocks and then the higher-level blocks – the CPU will go into "STOP"
mode. You can avoid this by downloading the entire program to the CPU.

Programming online

In practice, you may need to change the blocks already downloaded to the CPU for test
purposes. To do this, double-click the required block in the online window to open the
LAD/STL/FBD program window. Then program the block as usual. Note that the
programmed block immediately becomes active in your CPU.

You can find more information under Help >
Contents in the topics "Establishing an Online
Connection and Making CPU Settings" and
"Downloading from the PG / PC to the
Programmable Controller."

Downloading and Debugging the Program

7-6 STEP 7 Getting Started
C79000-G7076-C560-02

7.3 Testing the Program with Program Status

Using the program status function, you can test the program in a block. The
requirement for this is that you have established an online connection to the CPU,
the CPU is in RUN or RUN-P mode, and the program has been downloaded.

Open OB1 in the project window
"Getting Started ONLINE."

The LAD/STL/FBD program window is
opened.

Activate the function Debug >
Monitor.

Debugging with Ladder Logic

The series circuit in Network 1 is
displayed in Ladder Logic. The current
path is represented as a full line up to
Key 1 (I 0.1); this means that power is
already being applied to the circuit.

Debugging with Function Block Diagram

The signal state is indicated by "0" and
"1." The dotted line means that there is
no result of logic operation.

Debugging with Statement List

For Statement List the following is
displayed in tabular form:
– Result of logic operation (RLO)
– Status bit (STA)
– Standard status (STANDARD)

Using Options > Customize
you can change the way in
which the programming
language is represented during
testing.

Downloading and Debugging the Program

7-7STEP 7 Getting Started
C79000-G7076-C560-02

Now press both keys in your test
configuration.

The diodes for input I 0.1 and I 0.2 light
up on the input module.

The diode for output Q 4.0 lights up on
the output module.

In the graphic programming languages
Ladder Logic and Function Block
Diagram, you can trace the test result
by following the change in color in the
programmed network. This color
change shows that the result of logic
operation is fulfilled up to this point.

With the Statement List programming
language, the display in the STA and
RLO columns changes when the result
of logic operation is fulfilled.

Deactivate the function Debug >
Monitor and close the window.

Then close the online window in the
SIMATIC Manager.

We recommend you do not completely download extensive programs onto the CPU to run
them, because diagnosing errors is more difficult due to the number of possible sources of
an error. Instead, you should download blocks individually and then test them in order to
obtain a better overview.

You can find more information under Help > Contents
in the topics "Debugging" and "Testing with Program
Status."

DC 5V

FRCE

RUN

RUN P
RUN

STOP
M RES

STOP

ON
OFF

2

3

4

5

6

7

0

1

2

3

4

5

6

7

L+

L+

M M

M

N

L+ L+

M

ts
Byte 1

I 0.1

I 0.2

Downloading and Debugging the Program

7-8 STEP 7 Getting Started
C79000-G7076-C560-02

7.4 Testing the Program with the Variable Table

You can test individual program variables by monitoring and modifying them. The
requirement for this is that you have established an online connection to the CPU,
the CPU is in RUN-P mode, and the program has been downloaded.

As with testing with program status, you can monitor the inputs and outputs in
Network 1 (series circuit or AND function) in the variable table. You can also test
the comparator for the engine speed in FB1 by presetting the actual speed.

 Creating the Variable Table

The starting point is the SIMATIC
Manager again with the open project
window "Getting Started Offline."

Navigate to the Blocks folder and click
in the right half of the window with the
right mouse button.

Use the right mouse button to insert a
Variable Table from the pop-up menu.

Accept the default settings by closing
the "Properties" dialog box with OK.

A VAT1 (variable table) is created in
the Blocks folder.

Double-click to open VAT1; the
"Monitoring and Modifying Variables"
window will open.

Downloading and Debugging the Program

7-9STEP 7 Getting Started
C79000-G7076-C560-02

At first, the variable table is empty. Enter the symbolic names or the addresses for
the "Getting Started" example according to the illustration below. The remaining
details will be added when you complete your entry with Enter.

Change the status format of all the speed values to DEC (decimal) format. To do
this, click the corresponding cell in the header (the cursor will change to an arrow
over the Status Format column) and select DEC format using the right mouse
button.

Save your variable table.

Switching the Variable Table Online

Click the ON button in the toolbar of
the "Monitoring and Modifying
Variables" window to establish a
connection to the configured CPU. The
word "ONLINE" will appear in the
status bar.

Set the keyswitch of the CPU to
RUN-P (if you have not already done
so).

Downloading and Debugging the Program

7-10 STEP 7 Getting Started
C79000-G7076-C560-02

Monitoring Variables

Click the Monitor Variables button in
the toolbar. The operating mode of the
CPU is displayed in the status bar.

Press Key 1 and Key 2 in your test
configuration and monitor the result in
the variable table.

The status values in the variable table
will change from false to true.

Modifying Variables

Enter the value "1500" for the address MW2 in the Modify Value column and
"1300" for the address MW4.

Transfer the modify values to your
CPU.

Downloading and Debugging the Program

7-11STEP 7 Getting Started
C79000-G7076-C560-02

Following transfer, these values will be processed in your CPU. The result of the
comparison becomes visible.

Stop monitoring the variables (click the button in the toolbar again) and close the
window. Acknowledge any queries with Yes or OK.

Very large variable tables often cannot be displayed fully due to the limited screen space.

If you have large variable tables, we recommend you create several tables for one
S7 program using STEP 7. You can adapt the variable tables to precisely match your own
test requirements.

You can assign individual names to variable tables in the same way as for blocks (for
example, the name OB1_Network1 instead of VAT1). Use the symbol table to assign new
names.

You can find more information under Help > Contents
in the topics "Debugging" and "Testing with the
Variable Table."

Downloading and Debugging the Program

7-12 STEP 7 Getting Started
C79000-G7076-C560-02

7.5 Evaluating the Diagnostic Buffer

If, in an extreme case, the CPU goes into STOP while processing an S7 program,
or if you cannot switch the CPU to RUN after you have downloaded the program,
you can determine the cause of the error from the events listed in the diagnostic
buffer.

The requirement for this is that you have established an online connection to the
CPU and the CPU is in STOP mode.

First turn the operating mode switch on
the CPU to STOP.

The starting point is the SIMATIC
Manager again with the open project
window "Getting Started Offline."

Select the Blocks folder.

If there are several CPUs in your
project, first determine which CPU has
gone into STOP.

All the accessible CPUs are listed in
the "Diagnosing Hardware" dialog box.
The CPU with the STOP operating
mode is highlighted.

The "Getting Started" project only has
one CPU which is displayed.

Click Module Information to evaluate
the diagnostic buffer of this CPU.

If only one CPU is connected, you can
query the module information for this
CPU directly using the menu command
PLC > Module Information.

Downloading and Debugging the Program

7-13STEP 7 Getting Started
C79000-G7076-C560-02

The "Module Information" window provides you with information on the properties
and parameters of your CPU. Now select the "Diagnostic Buffer" tab to determine
the cause of the STOP state.

The latest event (number 1) is at the top of the list. The cause of the STOP state is
displayed. Close all windows except for the SIMATIC Manager.

If a programming error caused the CPU to go into STOP mode, select the event and click
the "Open Block" button.

The block is then opened in the familiar LAD/STL/FBD program window and the faulty
network is highlighted.

With this chapter you have successfully completed the "Getting Started" sample project,
from creating a project through to debugging the finished program. In the next chapters,
you can extend your knowledge further by working through selected exercises.

You can find more information under Help > Contents
in the topics "Calling the Module Information."

The "Open Block"
button is disabled,
because there was no
error in the block in the
"Getting Started"
project.

Downloading and Debugging the Program

7-14 STEP 7 Getting Started
C79000-G7076-C560-02

STEP 7 Getting Started
C79000-G7076-C560-02 8-1

8 Programming a Function

8.1 Creating and Opening Functions (FC)

Functions, like function blocks, are below the organization block in the program
hierarchy. In order for a function to be processed by the CPU, it must also be
called in the block above it in the hierarchy. In contrast to the function block,
however, no data block is necessary.

With functions, the parameters are also listed in the variable declaration table, but
static local data are not permitted.

You can program a function in the same way as a function block using the
LAD/STL/FBD program window.

You should already be familiar with programming in Ladder Logic, Function Block
Diagram, or Statement List (see Chapters 4 and 5) and also symbolic
programming (see Chapter 3).

If you have worked through the
"Getting Started" sample project in
Chapters 1 to 7, open this now.

If not, create a new project in the
SIMATIC Manager using the menu
command File > "New Project"
Wizard. To do this, follow the
instructions in Section 2.1 and rename
the project "Getting Started Function."

We will continue with the "Getting
Started" project. However, you can still
carry out each step using a new
project.

Navigate to the Blocks folder and
open it.

Click in the right half of the window
with the right mouse button.

Programming a Function

8-2 STEP 7 Getting Started
C79000-G7076-C560-02

Insert a Function (FC) from the
pop-up menu.

In the "Properties – Function" dialog
box, accept the name FC1 and select
the required programming language.

Confirm the remaining default settings
with OK.

The function FC1 is added to the
Blocks folder.

Double-click to open FC1.

In contrast to the function block, no static data can be defined in the variable declaration
table for a function.

The static data defined in a function block are retained when the block is closed. Static data
can be, for example, the memory bits used for the "Speed" limit values (see Chapter 5).

To program the function, you can use the symbolic names from the symbol table.

You can find more information under Help > Contents in the
topics "Working Out the Automation Concept," "Basics of
Designing a Program Structure," and "Blocks in the User
Program."

Programming a Function

8-3STEP 7 Getting Started
C79000-G7076-C560-02

8.2 Programming Functions

In this section, you will program a timer function in our example. The timer function
enables a fan to switch on as soon as an engine is switched on (see Chapter 5),
and the fan then continues running for four seconds after the engine is switched
off (off-delay).

As mentioned earlier, you must specify the input and output parameters of the
function ("in" and "out" declaration) in the variable declaration table.

The LAD/STL/FBD program window is open. You work with this variable
declaration table in the same way as with the table for the function block (see
Chapter 5).

Enter the following declarations:

Programming the Timer Function in Ladder Logic

Select the current path for entering the
Ladder instruction.

Navigate in the Program Elements
catalog until you reach the element
S_OFFDT (start off-delay timer), and
select the element.

Insert a normally open contact in front
of input S.
Insert a coil after output Q.

Programming a Function

8-4 STEP 7 Getting Started
C79000-G7076-C560-02

Select the question marks and enter the corresponding names from the variable
declaration table (the # sign is assigned automatically).

Set the delay time at input TV of S_OFFDT. Here, S5T#4s means that a constant
has been defined with the data type S5Time#(S5T#), lasting four seconds (4s).

Then save the function and close the window.

The "#Timer_Function" is started with
the input parameter "#Engine_On." Later
on when the function is called in OB1, it
will be supplied once with the
parameters for the petrol engine and
once with the parameters for the diesel
engine (for example, T1 for
"PE_Follow_on"). You will enter the
symbolic names of these parameters
later in the symbol table.

Programming a Function

8-5STEP 7 Getting Started
C79000-G7076-C560-02

Programming the Timer Function in Statement List

If you are programming in Statement
List, select the input area below the
network and enter the statement as
shown here.

Then save the function and close the
window.

Programming the Timer Function in Function Block Diagram

If you are programming in Function Block Diagram, select the input area below the
network and enter the FBD program below for the timer function.

Then save the function and close the window.

In order for the timer function to be processed, you need to call the function in a block
which is higher up in the block hierarchy (in our example, in OB1).

You can find more information under Help >
Contents in the topics "Calling Reference Helps,"
"The STL, FBD, or LAD Language Description,"
and "Timer Instructions."

Programming a Function

8-6 STEP 7 Getting Started
C79000-G7076-C560-02

8.3 Calling the Function in OB1

The call for the function FC1 is carried out in a similar way to the call for the
function block in OB1. All the parameters of the function are supplied in OB1 with
the corresponding addresses of the petrol or diesel engine.

Since these addresses are not yet defined in the symbol table, the symbolic
names of the addresses will now be added.

The SIMATIC Manager is open with
the "Getting Started" project or your
new project.

Navigate to the Blocks folder and
open OB1.

The LAD/STL/FBD program window
opens.

Adding Symbolic Names at a Later Stage

Open the symbol table from the LAD/STL/FBD program window using the menu
command Options > Symbol Table and use the scroll bars at the right-hand edge
of the window to scroll to the end of the symbol table.

Now add the following symbols to the symbol table:

An address is part of a STEP 7 statement and specifies
what the processor should execute the instruction on.
Addresses can be absolute or symbolic.

If you copied the symbol table from a sample
project (GS-LAD_Example, GS-STL_
Example, or GS-FBD_Example) to your
"Getting Started" project in Chapter 4, you do
not need to add any symbols now.

Programming a Function

8-7STEP 7 Getting Started
C79000-G7076-C560-02

Programming the Call in Ladder Logic

You are in LAD view. Insert a new
network (No. 6). Then navigate in the
Program Elements catalog until you
reach FC1 and insert the function.

Insert a normally open contact in front
of "Engine_On."

Click the question marks for the FC1 call and insert the symbolic names.

Program the call for the function FC1 in Network 7 using the addresses for the
diesel engine. You can do this in the same way as for the previous network (you
have already added the addresses for the diesel engine to the symbol table).

Save the block and then close the
window.

Using the menu command View >
Display >Symbolic Representation, you
can toggle between symbolic and absolute
addresses.

Activate the menu command View >Display > Symbol
Information to view the information on individual addresses in
each network.

To display several networks on the screen, deactivate the menu
command View > Display > Comment and, if necessary View >
Display > Symbol Information.

Using the menu command View > Zoom Factor, you can
change the size of the networks displayed.

Programming a Function

8-8 STEP 7 Getting Started
C79000-G7076-C560-02

Programming the Call in Statement List

If you are programming in Statement
List, select the input area below a new
network and enter the STL statements
shown here.

Then save the call and close the
window.

Programming the Call in Function Block Diagram

If you are programming in Function Block Diagram, select the input area below a
new network and enter the FBD instructions shown below.

Then save the call and close the window.

The call for the functions was programmed as an unconditional call in our example; that is,
the function will always be processed.

Depending on the requirements of your automation task, you can make the call for a
function or function block dependent on certain conditions; for example, an input or a
preceding logic operation. The EN input and the ENO output are provided in the box for
programming conditions.

You can find more information under Help >
Contents in the topics "Calling Reference Helps,"
"The LAD, FBD, or STL Language Description," or
"Program Control Instructions."

STEP 7 Getting Started
C79000-G7076-C560-02 9-1

9 Programming a Shared Data Block

9.1 Creating and Opening Shared Data Blocks

If there are not enough internal memory bits in a CPU to save all the data, you can
store specific data in a shared data block.

The data in a shared data block are available to every other block. An instance
data block, on the other hand, is assigned to one specific function block, and its
data are only available locally in this function block (see Section 5.5).

You should already be familiar with programming in Ladder Logic, Function Block
Diagram, or Statement List (see Chapters 4 and 5) and also symbolic
programming (see Chapter 3).

If you have worked through the
"Getting Started" sample project in
Chapters 1 to 7, open this now.

If not, create a new project in the
SIMATIC Manager using the menu
command File > "New Project"
Wizard. To do this, follow the
instructions in Section 2.1 and rename
the project "Getting Started Function."

We will continue with the "Getting
Started" project. However, you can still
carry out each step using a new
project.

Navigate to the Blocks folder and
open it.

Click in the right half of the window
with the right mouse button.

Programming a Shared Data Block

9-2 STEP 7 Getting Started
C79000-G7076-C560-02

Insert a Data Block (DB) from the
pop-up menu.

In the "Properties – Data Block" dialog
box, accept all the default settings with
OK.

Use the "Help“ Button for further
information.

The data block DB3 has been added to
the Blocks folder.

Double-click to open DB3.

In the "New Data Block" dialog box
which then appears, activate the option
Data block.
Close the dialog box with OK.

Remember: In Section 5.5, you
generated an instance data
block by activating the option
"Data block referencing a
function block." In contrast, using
"Data block" you create a shared
data block.

Programming a Shared Data Block

9-3STEP 7 Getting Started
C79000-G7076-C560-02

Programming Variables in the Data Block

Enter "PE_Actual_Speed" in the Name
column.

Click with the right mouse button to
select the type using the menu
command Elementary Types > INT
from the pop-up menu.

In the example below, three shared data are defined in DB3. Enter these data
accordingly in the variable declaration table.

Save the shared data block.

The variables for the actual speeds in the data block
"PE_Actual_Speed" and "DE_Actual_Speed" are treated
in the same way as the memory words MW2
(PE_Actual_Speed) and MW4 (DE_Actual_Speed). This
can be seen in the next chapter.

Programming a Shared Data Block

9-4 STEP 7 Getting Started
C79000-G7076-C560-02

Assigning Symbols

You can also assign symbolic names
to data blocks.

Open the Symbol Table and enter the
symbolic name "S_Data" for the data
block DB3.

Save the symbol table and close the
"Symbol Editor" window.

Also close the variable declaration
table for the shared data block.

Shared data blocks in the variable declaration table:

Using the menu command View > Data View, you can change the actual values of the data
type INT in the table for the shared data block (see Section 5.5).

Shared data blocks in the symbol table:

In contrast to the instance data block, the data type for the shared data block in the symbol
table is always the absolute address. In our example, the data type is "DB3." With the
instance data block, the corresponding function block is always specified as the data type.

You can find more information under Help > Contents in the topics
"Programming Blocks" and "Creating Data Blocks."

If you copied the symbol table from a sample
project (zEn01_02_STEP7__STL_1-10,
zEn01_06_STEP7__LAD_1-10 oder
zEn01_04_STEP7__FBD_1-10) to your
"Getting Started" project in Chapter 4, you do
not need to add any symbols now.

STEP 7 Getting Started
C79000-G7076-C560-02 10-1

10 Programming a Multiple Instance

10.1 Creating and Opening a Higher-Level Function Block

In Chapter 5 you created a program for controlling an engine with the function
block "Engine" (FB1). When the function block FB1 was called in the organization
block OB1, it used the data blocks "Petrol" (DB1) and "Diesel" (DB2). Each data
block contained the different data for the engines (for example, #Setpoint_Speed).

Now imagine that you require other programs to control the engine for your
automation task; for example, a control program for a rapeseed oil engine, or a
hydrogen engine, etc.

Following the procedure you have learned so far, you would now use FB1 for each
additional engine control program and assign a new data block each time with the
data for this engine; for example, FB1 with DB3 to control the rapeseed oil engine,
FB1 with DB4 for the hydrogen engine, etc. The number of blocks would increase
significantly as you created new engine control programs.

By working with multiple instances, on the other hand, you can reduce the number
of blocks. To do this, you create a new, higher-level function block (in our example,
FB10), and call the unchanged FB1 in it as a "local instance." For each call, the
subordinate FB1 stores its data in data block DB10 of the higher-level FB10. This
means that you do not have to assign any data blocks to FB1. All the function
blocks refer back to a single data block (here DB10).

The data blocks DB1 and DB2 are integrated in
DB10. To do this, you must declare FB1 in the static
local data of FB10.

OB1
CALL FB10, DB10

FB10
CALL FB1 (for petrol engine)
CALL FB1 (for diesel engine)
. . .

DB10
"Petrol engine" data
"Diesel engine" data

FB1
"Engine"

FB1
"Engine"

Programming a Multiple Instance

10-2 STEP 7 Getting Started
C79000-G7076-C560-02

You should already be familiar with programming in Ladder Logic, Function Block
Diagram, or Statement List (see Chapters 4 and 5) and also symbolic
programming (see Chapter 3).

If you have worked through the
"Getting Started" example in Chapters
1 to 7, open the "Getting Started"
project.

If not, open one of the following
projects in the SIMATIC Manager:
zEn01_06_STEP7__LAD_1-9 for
Ladder Logic,
zEn01_02_STEP7__STL_1-9 for
Statement List
zEn01_04_STEP7__FBD_1-9 for
Function Block Diagram.

Navigate to the Blocks folder and
open it.

Click with the right mouse button in the
right half of the window and insert a
function block using the pop-up menu.

Change the name of the block to FB10
and select the required programming
language.

Activate Multiple instance FB (if
necessary) and accept the remaining
default settings with OK.

FB10 has been added to the Blocks
folder. Double-click to open FB10.

You can create multiple instances for any function block, even for valve control programs,
for example. If you want to work with multiple instances, note that both the calling and the
called function blocks must have multiple instance capability.

You can find more information under Help > Contents in the topics
"Programming Blocks" and "Creating Blocks and Libraries."

Programming a Multiple Instance

10-3STEP 7 Getting Started
C79000-G7076-C560-02

10.2 Programming FB10

To call FB1 as a "local instance" of FB10, a static variable must be declared with a
a different name for each planned call of FB1. Here, the data type is FB1
("Engine").

Filling out the Variable Declaration Table

The LAD/STL/FBD program window is open. Declare the following variables for
the FB1 call:

Programming FB10 in Ladder Logic

Insert the call "Petrol_Engine" as the
multiple-instance block
"Petrol_Engine" in Network 1.

Then insert the required normally open contacts and complete the call with the
symbolic names.

The declared local instances will then appear in the
Program Elements catalog under "Multiple Instances."

The "Actual_Speed" for the engines is not
taken from a memory bit (see Section 5.6
onwards), but from a shared data block
(see Section 9.1). The general address
assignment is as follows:
"Data_Block".Address, for example:
"S_Data".PE_Actual_Speed.

Programming a Multiple Instance

10-4 STEP 7 Getting Started
C79000-G7076-C560-02

Insert a new network and program the call for the diesel engine. Proceed in the
same way as for Network 1.

Insert a new network and program a series circuit with the corresponding
addresses. Then save your program and close the block.

Programming FB10 in Statement List

If you are programming in Statement
List, select the input area under a new
network and enter the STL instructions
shown here.

Then save your program and close the
block.

The temporary variables
("PE_Setpoint_Reached" and
"DE_Setpoint_Reached") are
supplied to the output parameter
"Setpoint_Reached," which is
then processed further in OB1.

Programming a Multiple Instance

10-5STEP 7 Getting Started
C79000-G7076-C560-02

Programming FB10 in Function Block Diagram

If you are programming in Function Block Diagram, select the input area under a
new network and enter the FBD instructions below.

Then save your program and close the block.

To edit both calls for FB1 in FB10, FB10 must be called itself.

Multiple instances can only be programmed for function blocks. Creating multiple instances
for functions (FCs) is not possible.

You can find more information under Help > Contents in the
topics "Programming Blocks," "Creating Logic Blocks," and
"Multiple Instances in the Variable Declaration Table."

Programming a Multiple Instance

10-6 STEP 7 Getting Started
C79000-G7076-C560-02

10.3 Generating DB10 and Adapting the Actual Value

The new data block DB10 will replace the data blocks DB1 and DB2. The data for
the petrol engine and the diesel engine are stored in DB10 and will be required
later for calling FB10 in OB1 (see "Calling FB1 in OB1" from Section 5.6 onwards).

Create the data block DB10 in the
Blocks folder of the "Getting Started"
project in the SIMATIC Manager using
the pop-up menu.

To do this, change the name of the
data block to DB10 in the dialog box
which appears and confirm the
remaining settings with OK.

The data block DB10 has been added.
Open this block to view the "New Data
Block" dialog box.

Activate the option Data block
referencing a function block and
select FB10.

Confirm the settings with OK.

The data block DB10 is opened. Select
the menu command View > Data
View.

The data view displays each individual
variable in DB10, including the "internal"
variables of the two calls for FB1 ("local
instances").

The declaration view displays the variables
as they are declared in FB10.

Programming a Multiple Instance

10-7STEP 7 Getting Started
C79000-G7076-C560-02

Change the actual value of the diesel engine to "1300," save the block, and then
close it.

All the variables are now contained in the variable declaration table of DB10. In the first half,
you can see the variables for calling the function block "Petrol_Engine" and in the second
half the variables for calling the function block "Diesel_Engine" (see Section 5.5).

The "internal" variables of FB1 retain their symbolic names; for example, "Switch_On." The
name of the local instance is now placed in front of these names; for example,
"Petrol_Engine.Switch_On."

You can find more information under Help > Contents in the
topics "Programming Blocks" and "Creating Data Blocks."

Programming a Multiple Instance

10-8 STEP 7 Getting Started
C79000-G7076-C560-02

10.4 Calling FB10 in OB1

The call for FB10 is made in OB1 in our example. This call represents the same
function which you have learned while programming and calling FB1 in OB1 (see
Section 5.6 onwards.). Using multiple instances, you can replace Networks 4 and
5 programmed from Section 5.6 onwards.

Open OB1 in the project in which you
have just programmed FB10.

Defining Symbolic Names

The LAD/STL/FBD program window is open. Open the symbol table using the
menu command Options > Symbol Table and enter the symbolic names for the
function block FB10 and the data block DB10 in the symbol table.

Then save the symbol table and close the window.

Programming the Call in Ladder Logic

Insert a new network at the end of OB1
and add the call for FB10 ("Engines").

If you copied the symbol table from a sample
project (zEn01_02_STEP7__STL_1-10,
zEn01_06_STEP7__LAD_1-10 oder
zEn01_04_STEP7__FBD_1-10) to your
"Getting Started" project in Chapter 4, you do
not need to add any symbols now.

Programming a Multiple Instance

10-9STEP 7 Getting Started
C79000-G7076-C560-02

Complete the call below with the corresponding symbolic names.
Delete the call for FB1 in OB1 (Networks 4 and 5 from Section 5.6 onwards), since
we are now calling FB1 centrally via FB10.
Then save your program and close the block.

Programming the Call in Statement List

If you are programming in Statement List, select the input area under the new
network and enter the STL instructions below. To do this, use the FB Blocks >
FB10 Engines in the Program Elements catalog.

Delete the call for FB1 in OB1 (Networks 4 and 5 from Section 5.6 onwards), since
we are now calling FB1 centrally via FB10.

Then save your program and close the block.

The output signal "Setpoint_Reached" for FB10
("Engines") is passed on to the variable in the
shared data block.

Programming a Multiple Instance

10-10 STEP 7 Getting Started
C79000-G7076-C560-02

Programming the Call in Function Block Diagram

If you are programming in Function Block Diagram, select the input area under the
new network and enter the FBD instructions below. To do this, use the FB Blocks
> FB10 Engines in the Program Elements catalog.
Delete the call for FB1 in OB1 (Networks 4 and 5 from Section 5.6 onwards), since
we are now calling FB1 centrally via FB10.
Then save your program and close the block.

If you require additional engine control programs for your automation task; for example, for
gas engines, hydrogen engines, etc., you can program these as multiple instances in the
same way and call them from FB10.

To do this, declare the additional engines as shown in the variable declaration table of FB10
("Engines") and program the call for FB1 in FB10 (multiple instance in the Program
Elements catalog). You can then define the new symbolic names; for example, for the
switch-on and switch-off procedures in the symbol table.

You can find more information under Help > Contents in the
topics "Calling References Helps," "The STL, FBD, or LAD
Language Description," and "Program Control Instructions."

STEP 7 Getting Started
C79000-G7076-C560-02 11-1

11 Configuring the Distributed I/O

11.1 Configuring the Distributed I/O with PROFIBUS DP

Automation systems with conventional configurations have the cable connections
to the sensors and actuators inserted directly into the I/O modules of the central
programmable logic controller. This often means a considerable amount of wiring
is involved.
Using a distributed configuration, you can considerably reduce the amount of
wiring involved by placing the input and output modules close to the sensors and
actuators. You can establish the connection between the programmable logic
controller, the I/O modules, and the field devices using the PROFIBUS DP.
You can find out how to program a conventional configuration in Chapter 6. It
makes no difference whether you create a central configuration or a distributed
configuration. You select the modules to be used from the hardware catalog,
arrange them in the rack, and adapt their properties according to your
requirements.
It would be an advantage when reading this chapter if you have already
familiarized yourself with creating a project and programming a central
configuration (see Section 2.1 and Chapter 6).

Direct connection between
CPU and programming
device / PC via MPI

PROFIBUS-DP network
between master and
slaves

Master device:
for example, CPU 315-2DP

Modular slaves:
for example, ET 200 M-IM153

Compact slaves:
for example, I/O modules
ET 200B-16DI / 16DO

Configuring the Distributed I/O

11-2 STEP 7 Getting Started
C79000-G7076-C560-02

Creating a New Project

The starting point is the SIMATIC
Manager. To make things easier to
follow, close any open projects.

Create a new project.

Select the CPU 315-2DP in the
corresponding dialog box (CPU with
PROFIBUS-DP network).

Now proceed in the same way as for
Section 2.1 and assign the project the
name "GS-DP" (Getting Started –
Distributed I/O).

If you want to create your own
configuration at this point, specify your
CPU now. Note that your CPU must
support distributed I/Os.

Inserting the PROFIBUS Network

Select the folder GS-DP and insert the
PROFIBUS network using the right
mouse button in the right half of the
window.

Configuring the Distributed I/O

11-3STEP 7 Getting Started
C79000-G7076-C560-02

Configuring the Station

Select the folder SIMATIC 300 Station
and double-click Hardware.
The "HW Config" window is opened
(see Section 6.1).

The CPU 315-2 DP already appears in
the rack. If necessary, open the
Hardware catalog using the menu
command View > Hardware Catalog
or the corresponding button in the
toolbar.

Drag and drop the power supply
module PS307 2A into slot 1.

In the same way, insert the I/O
modules DI32xDC24V and
DO32xDC24V/0.5A in slots 4 and 5.

In addition to the CPU which supports the
distributed I/O, you can also place other CPUs in
the same rack (not described here).

Configuring the Distributed I/O

11-4 STEP 7 Getting Started
C79000-G7076-C560-02

Configuring the DP-Master System

Select the DP master in slot 2.1 and
insert a DP-master system.

Navigate in the Hardware catalog until
you reach the module B-16DI and
insert this module in the master system
(drag the object to the master system
until the cursor changes to a "+" sign;
then drop the object).

You can change the node address of
the module you have inserted in the
"Network Connection" tab of the
"Properties" dialog box.
Confirm the suggested address 1 with
OK.

In the same way, drag and drop the
module B-16DO onto the master
system.

The node address is automatically
adapted in the dialog box. Confirm this
entry with OK.

You can now move any objects which you
place in the master system by dragging
them with the left mouse button held down.

Configuring the Distributed I/O

11-5STEP 7 Getting Started
C79000-G7076-C560-02

Drag and drop the interface module
IM153 onto the master system and
confirm the node address again with
OK.

Select the ET200M in the network.
The free slots for the ET200M are
displayed in the lower configuration
table. Select slot 4 here.

The ET200M itself can have additional
I/O modules. Select, for example, the
module DI32xDC24V for slot 4 and
double-click this module to insert it.

In our example, we are using the default
node addresses. However, you can change
these addresses at any time to meet your
requirements.

You should always make sure that you are in
the right folder when using the Hardware
catalog. For example, navigate to the
ET200M folder to select modules for the
ET200M.

Configuring the Distributed I/O

11-6 STEP 7 Getting Started
C79000-G7076-C560-02

Changing the Node Address

In our example, we do not need to
change the node address. In practice,
however, this is often necessary.

Select the other nodes one after
another and check the input and output
addresses. The "Configuring
Hardware" application has adapted all
the addresses, so there are no double
assignments.

Let us imagine that you want to
change the address of the ET200M:

Select the ET200M and double-click
DO32xDC24V/0.4A (slot 4).

Now change the input addresses in the
"Addresses" tab of the "Properties"
dialog box from 6 to 12.
Close the dialog box with OK.

Finally, save and compile the
distributed I/O configuration.

Close the window.

The menu command Save and Compile means
that the configuration is automatically checked for
consistency. If there are no errors, the system
data are generated and can be downloaded to the
programmable controller.

With Save, you can save the configuration even if
it contains errors. However, you cannot then
download the configuration to the programmable
controller.

Configuring the Distributed I/O

11-7STEP 7 Getting Started
C79000-G7076-C560-02

Optional: Configuring Networks

You can also configure the distributed
I/O using the optional package
"Configuring Networks."

Double-click the network PROFIBUS
(1) in the SIMATIC Manager.

The "NETPRO" window is opened.

You can drag and drop additional
DP slaves onto the PROFIBUS DP
from the catalog of network objects.

Double-click any element to configure
it. The "Configuring Hardware" window
is opened.

Using the menu commands Station > Consistency Check ("Configuring Hardware"
window) and Network > Consistency Check ("Configuring Networks" window), you can
check the configuration for errors before saving. Any errors are displayed and STEP 7 will
suggest possible solutions.

You can find more information under Help > Contents in the topics
"Configuring the Hardware" and "Configuring the Distributed I/O."

Configuring the Distributed I/O

11-8 STEP 7 Getting Started
C79000-G7076-C560-02

Congratulations! You have worked through the Getting Started manual and learned the most
important terms, procedures, and functions of STEP 7. Now you can get started on your first
project.

If, while working on future projects, you are looking for specific functions or have forgotten any
of the operating instructions in STEP 7, you can use our comprehensive Help on STEP 7.

If you want to extend your knowledge of STEP 7, there are a number of specialized training
courses available. Your local Siemens representative will be happy to help you.

We wish you lots of success with your projects!

Siemens AG

STEP 7 Getting Started
C79000-G7076-C560-02 A-1

Appendix A

Overview of the Sample Projects for the Getting Started Manual

• zEn01_02_STEP7__STL_1-10:
The programmed Chapters 1 to 10 including the symbol table in the STL
programming language.

• zEn01_01_STEP7__STL_1-9:
The programmed Chapters 1 to 9 including the symbol table in the STL
programming language.

• zEn01_06_STEP7__LAD_1-10:
The programmed Chapters 1 to 10 including the symbol table in the LAD
programming language.

• zEn01_05_STEP7__LAD_1-9:
The programmed Chapters 1 to 9 including the symbol table in the LAD
programming language.

• zEn01_04_STEP7__FBD_1-10:
The programmed Chapters 1 to 10 including the symbol table in the FBD
programming language.

• zEn01_03_STEP7__FBD_1-9:
The programmed Chapters 1 to 9 including the symbol table in the FBD
programming language.

• zEn01_07_STEP7__Dist_IO:
The programmed Chapter 11 with the distributed I/O.

Appendix A

STEP 7 Getting Started
A-2 C79000-G7076-C560-02

Index-1STEP 7 Getting Started
C79000-G7076-C560-02

Index

A
Absolute address ... 3-1
Actual values

changing.. 5-11
AND function.. 1-1
Applying voltage ... 7-3

B
Block call in function block diagram................... 5-18
Block call in ladder logic..................................... 5-13
Block call in statement list 5-16

C
Calling the function... 8-6
Calling the Help .. 2-6
Changing the node address.................................. 11-6
Configuring hardware.. 6-1
Configuring networks.. 11-7
Configuring the central rack.................................. 6-1
Configuring the Distributed I/O 11-1
Configuring the Distributed I/O with

PROFIBUS DP ... 11-1
Configuring the DP-Master System..................... 11-4
Configuring the hardware...................................... 7-1
CPU, switching on... 7-5
Creating a program with function blocks

and data blocks.. 5-1
Creating a Project .. 2-1
Creating function blocks 5-1
Creating functions ... 8-1
Creating Shared data blocks 9-1
Creating the variable table..................................... 7-8

D
Data blocks

generating instance data blocks....................... 5-11
Data type ... 3-3
Debugging with function block diagram 7-6
Debugging with ladder logic 7-6
Debugging with statement list 7-6
Diagnostic Buffer, evaluating.............................. 7-12
Distributed I/O, configuring 11-1
Downloading the program to the programmable

controller... 7-3
DP-Master system, configuring........................... 11-4

E
Establishing an online connection 7-1
Evaluating the Diagnostic Buffer 7-12

F
Filling out the variable declaration table

function block diagram5-8
ladder logic ..5-3
statement list ..5-6

Function block biagram
block call..5-18

Function block diagram
debugging ..7-6
programming the timer function8-5

Function block, programming in function block
diagram ..5-8

Function block, programming in ladder logic5-3
Function block, programming in statement list5-6
Function blocks, creating5-1
Function blocks, opening5-1
Function, calling...8-6
Functions, creating ...8-1
Functions, opening ...8-1

H
Hardware, configuring ...6-1
Help, calling...2-6

I
Installation..1-5
Instance data blocks

generating ..5-11
Introduction to STEP 7...1-1

L
Ladder logic

block call..5-13
debugging ..7-6
programming the timer function8-3

M
Modifying variables ...7-10
Module information, query...................................7-12
Monitoring variables ..7-10
Multiple instance, programming10-1

N
Node addresses, changing11-6

Index

Index-2 STEP 7 Getting Started
C79000-G7076-C560-02

O
Online connection, establishing............................. 7-1
Opening function blocks.. 5-1
Opening functions.. 8-1
Opening shared data blocks 9-1
Operating Mode, checking..................................... 7-5
OR function ... 1-1

P
Procedure using STEP 7 .. 1-4
Program, downloading to the programmable

controller ... 7-3
Programming a function (FC)................................ 8-1
Programming a multiple instance 10-1
Programming a shared data block.......................... 9-1
Programming FB1 in function block diagram........ 5-8
Programming FB1 in ladder logic.......................... 5-3
Programming FB1 in statement list 5-6
Programming the timer function in function block

diagram.. 8-5
Programming the timer function in ladder logic 8-3
Programming the timer function in statement list.. 8-5
Programming, symbolic... 3-2
Project structure in the SIMATIC Manager........... 2-5
Project structure, navigating 2-6
Projects, creating ... 2-1

R
Resetting the CPU and switching it to RUN.......... 7-3

S
Shared data block, programming 9-1
Shared data blocks in the symbol table.................. 9-4
Shared data blocks in the variable

declaration table .. 9-4
Shared data blocks, creating 9-1
Shared data blocks, opening 9-1
SIMATIC Manager

project structure... 2-5
SIMATIC Manager, starting.................................. 2-1
SIMATIC, further software 2-7
SR function.. 1-2
Starting the SIMATIC Manager 2-1
Statement list

block call ... 5-16
debugging.. 7-6
programming the timer function........................ 8-5

Switching the variable table online........................ 7-9
Symbol editor .. 3-2
Symbol table.. 3-2
Symbolic programming ... 3-2

V
Variable table, creating.. 7-8
Variable Table, switching online 7-9
Variable, modifying... 7-10
Variables, monitoring .. 7-10

STEP 7 Getting Started
C79000-G7076-C560-02 1

"

Siemens AG
A&D AS E 81
Oestliche Rheinbrueckenstr. 50
76181 Karlsruhe

From:

Your Name: ..

Your Title: ...

Company Name: ..

Street:...

Country:..

Phone: ..

Please check any industry that applies to you:

❐ Automotive ❐ Pharmaceutical

❐ Chemical ❐ Plastic

❐ Electrical Machinery ❐ Pulp and Paper

❐ Food ❐ Textiles

❐ Instrument and Control ❐ Transportation

❐ Nonelectrical Machinery ❐ Other ..

❐ Petrochemical

STEP 7 Getting Started
2 C79000-G7076-C560-02

Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of our
publications. Please take the first available opportunity to fill out this questionnaire and return it
to Siemens.

Please give each of the following questions your own personal mark within the range from 1
(very good) to 5 (poor).

1. Do the contents meet your requirements? o

2. Is the information you need easy to find? o

3. Is the text easy to understand? o

4. Does the level of technical detail meet your requirements? o

5. Please rate the quality of the graphics/tables: o

Additional comments:

..

..

..

..

..

..

..

..

..

..

..

..

	Title
	Welcome to STEP 7...
	Contents
	1 Introduction to STEP 7
	1.1 What You Will Learn
	1.2 Combining Hardware and Software
	1.3 Basic Procedure Using STEP 7
	1.4 Installing STEP 7

	2 The SIMATIC Manager
	2.1 Starting the SIMATIC Manager and Creating a Project
	2.2 The Project Structure in the SIMATIC Manager and How to Call the Online Help

	3 Programming with Symbols
	3.1 Absolute Addresses
	3.2 Symbolic Programming

	4 Creating a Program in OB1
	4.1 Opening the LAD/STL/FBD Program Window
	4.2 Programming OB1 in Ladder Logic
	4.3 Programming OB1 in Statement List
	4.4 Programming OB1 in Function Block Diagram

	5 Creating a Program with Function Blocks and Data Blocks
	5.1 Creating and Opening Function Blocks (FB)
	5.2 Programming FB1 in Ladder Logic
	5.3 Programming FB1 in Statement List
	5.4 Programming FB1 in Function Block Diagram
	5.5 Generating Instance Data Blocks and Changing Actual Values
	5.6 Programming a Block Call in Ladder Logic
	5.7 Programming a Block Call in Statement List
	5.8 Programming a Block Call in Function Block Diagram

	6 Configuring the Central Rack
	6.1 Configuring Hardware

	7 Downloading and Debugging the Program
	7.1 Establishing an Online Connection
	7.2 Downloading the Program to the Programmable Controller
	7.3 Testing the Program with Program Status
	7.4 Testing the Program with the Variable Table
	7.5 Evaluating the Diagnostic Buffer

	8 Programming a Function
	8.1 Creating and Opening Functions (FC)
	8.2 Programming Functions
	8.3 Calling the Function in OB1

	9 Programming a Shared Data Block
	9.1 Creating and Opening Shared Data Blocks

	10 Programming a Multiple Instance
	10.1 Creating and Opening a Higher-Level Function Block
	10.2 Programming FB10
	10.3 Generating DB10 and Adapting the Actual Value
	10.4 Calling FB10 in OB1

	11 Configuring the Distributed I/O
	11.1 Configuring the Distributed I/O with PROFIBUS DP

	Appendix A
	Overview of the Sample Projects for the Getting Started Manual

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	V

	Remarks Form

